Two City Scheduling(easy)
问题描述:
There are 2N people a company is planning to interview. The cost of flying the i-th person to city A is costs[i][0], and the cost of flying the i-th person to city B is costs[i][1].
Return the minimum cost to fly every person to a city such that exactly N people arrive in each city.
一个数组列表中costs[i][0]表示第i个人去A城市的花销,costs[i][1]表示第i个人去B城市的花销。问我们如何安排使总花销最小,同时去两地的人数还是相同的。
Example:
Example 1:
Input: [[10,20],[30,200],[400,50],[30,20]]
Output: 110
Explanation:
The first person goes to city A for a cost of 10.
The second person goes to city A for a cost of 30.
The third person goes to city B for a cost of 50.
The fourth person goes to city B for a cost of 20.
The total minimum cost is 10 + 30 + 50 + 20 = 110 to have half the people interviewing in each city.
Note:
- 1 <= costs.length <= 100
- It is guaranteed that costs.length is even.
- 1 <= costs[i][0], costs[i][1] <= 1000
解法:
可以先求某一人去两地的花费差,然后将这个差值排序,差值越小说明去A地的花费越小,那么我们只需要取前半部分差值对应的数组的第一个位置和后半部分的第二个位置求和就可以了。
class Solution:
def twoCitySchedCost(self, costs: List[List[int]]) -> int:
result_list = []
for i in costs:
result_list.append([i[0] - i[1],i])
result_list.sort()
print(result_list)
result = 0
N = len(result_list)
for i in range(N // 2):
print(result_list[i][1][0] , result_list[N - i - 1][1][1])
result += result_list[i][1][0] + result_list[N - i - 1][1][1]
return result