ChatGPT生成文本检测器

本文介绍了人工智能在自然语言处理领域中生成模型的发展,特别是ChatGPT,引发了文本真实性的辨识挑战。文章聚焦于构建文本分类模型区分真实对话和ChatGPT生成的对话,竞赛中参与者需利用给定数据集训练模型,评估标准为准确率。
摘要由CSDN通过智能技术生成

一、赛事背景

近年来人工智能在自然语言处理领域取得了巨大的进展。其中一项引人注目的技术是生成模型,如OpenAI的GPT-3.5。这类模型通过学习大量的文本数据,具备了生成高质量文本的能力,从而引发了一系列关于文本生成真实性的讨论。
正因为生成模型的迅猛发展,也引发了一个新的挑战,即如何区分人类编写的文本与机器生成的文本。传统上,我们借助语法错误、逻辑不连贯等特征来辨别机器生成的文本,但随着生成模型的不断改进,这些特征变得越来越难以区分。因此,为了解决这一问题,研究人员开始探索使用NLP文本分类技术来区分人类编写的文本和机器生成的文本。

二、赛题任务

本赛题旨在构建一个文本分类模型,以区分真实对话和由ChatGPT生成的对话文本。在给定的数据集中,包含了一系列真实对话和ChatGPT生成的对话样本,参赛选手需要设计并训练一个模型,使其能够准确地将这两种类型的对话进行分类。

三、评审规则

  1. 数据说明
    数据集为中文作文样本,其中从互联网上采集得到了真实作文,并且ChatGLM-6B生成了部分作文。参赛选手的任务是根据文本内容,区分作文的来源。

  2. 评估指标
    本次竞赛的评价标准采用准确率指标,最高分为1。

在这里插入图片描述

  1. 评测及排行
  • 赛事提供下载数据,选手在本地进行算法调试,在比赛页面提交结果。

  • 每支团队每天最多提交3次。

  • 排行按照得分从高到低排序,排行榜将选择团队的历史最优成绩进行排名。

  • 允许使用开源模型,但不允许使用外部数据集。

四、作品提交要求

文件格式:预测结果文件按照csv格式提交

文件大小:无要求

提交次数限制:每支队伍每天最多3次

预测结果文件详细说明:

  1. 以csv格式提交,编码为UTF-8,第一行为表头;

  2. 提交前请确保预测结果的格式与sample_submit.csv中的格式一致。具体格式如下:
    在这里插入图片描述

任务一:报名比赛,下载比赛数据集并完成读取

使用Pandas库读取和加载数据集,将数据转化为可供处理的数据结构。

import pandas as pd
train_data = pd.read_csv('./ChatGPT生成文本检测器公开数据-更新/train.csv')
test_data = pd.read_csv('./ChatGPT生成文本检测器公开数据-更新/test.csv')
train_data.head()

根据提供的数据集示例,数据集包含三列:name、label和content。下面是对每一列的解释:
name:数据的索引或编号。
label:文本的标签,表示文本原始是否来自ChatGPT/ChatGLM。0表示人类编写的文本,1表示机器生成的文本。
content:文本经过匿名编码后的结果,按照字符进行编码。
在这里插入图片描述
查看第二行的内容,这是经过编码后的字符。

 train_data['content'][1] 

在这里插入图片描述

任务二:对数据集字符进行可视化,统计标签和字符分布

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值