一、赛事背景
近年来人工智能在自然语言处理领域取得了巨大的进展。其中一项引人注目的技术是生成模型,如OpenAI的GPT-3.5。这类模型通过学习大量的文本数据,具备了生成高质量文本的能力,从而引发了一系列关于文本生成真实性的讨论。
正因为生成模型的迅猛发展,也引发了一个新的挑战,即如何区分人类编写的文本与机器生成的文本。传统上,我们借助语法错误、逻辑不连贯等特征来辨别机器生成的文本,但随着生成模型的不断改进,这些特征变得越来越难以区分。因此,为了解决这一问题,研究人员开始探索使用NLP文本分类技术来区分人类编写的文本和机器生成的文本。
二、赛题任务
本赛题旨在构建一个文本分类模型,以区分真实对话和由ChatGPT生成的对话文本。在给定的数据集中,包含了一系列真实对话和ChatGPT生成的对话样本,参赛选手需要设计并训练一个模型,使其能够准确地将这两种类型的对话进行分类。
三、评审规则
-
数据说明
数据集为中文作文样本,其中从互联网上采集得到了真实作文,并且ChatGLM-6B生成了部分作文。参赛选手的任务是根据文本内容,区分作文的来源。 -
评估指标
本次竞赛的评价标准采用准确率指标,最高分为1。
- 评测及排行
-
赛事提供下载数据,选手在本地进行算法调试,在比赛页面提交结果。
-
每支团队每天最多提交3次。
-
排行按照得分从高到低排序,排行榜将选择团队的历史最优成绩进行排名。
-
允许使用开源模型,但不允许使用外部数据集。
四、作品提交要求
文件格式:预测结果文件按照csv格式提交
文件大小:无要求
提交次数限制:每支队伍每天最多3次
预测结果文件详细说明:
-
以csv格式提交,编码为UTF-8,第一行为表头;
-
提交前请确保预测结果的格式与sample_submit.csv中的格式一致。具体格式如下:
任务一:报名比赛,下载比赛数据集并完成读取
使用Pandas库读取和加载数据集,将数据转化为可供处理的数据结构。
import pandas as pd
train_data = pd.read_csv('./ChatGPT生成文本检测器公开数据-更新/train.csv')
test_data = pd.read_csv('./ChatGPT生成文本检测器公开数据-更新/test.csv')
train_data.head()
根据提供的数据集示例,数据集包含三列:name、label和content。下面是对每一列的解释:
name:数据的索引或编号。
label:文本的标签,表示文本原始是否来自ChatGPT/ChatGLM。0表示人类编写的文本,1表示机器生成的文本。
content:文本经过匿名编码后的结果,按照字符进行编码。
查看第二行的内容,这是经过编码后的字符。
train_data['content'][1]
任务二:对数据集字符进行可视化,统计标签和字符分布