用prompt提示词构建你的专属聊天机器人学习笔记

本期是大模型应用开发技巧与实战的第三节课

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 使用LangChain框架创建聊天机器人的教程 #### 创建基础环境 为了构建一个基于LangChain的聊天机器人,首先需要准备开发环境。这包括安装必要的库和配置API密钥。 ```bash pip install langchain langchain-community openai neo4j ``` 上述命令会安装`langchain`, `langchain-community`以及用于调用OpenAI API和服务于图数据存储解决方案——Neo4j的相关包[^4]。 #### 初始化项目结构 建立合理的文件夹布局有助于项目的维护和发展: - `/config`: 存放配置文件如API keys. - `/data`: 数据集或预训练模型的位置。 - `/models`: 自定义模型代码。 - `/utils`: 辅助函数集合。 - `app.py`: 主应用程序入口点。 #### 设计对话流程 根据具体应用场景设计交互逻辑,比如处理用户的问候语句、查询天气预报或是获取最新资讯等功能。这里给出一段简化版的例子说明如何响应不同类型的请求[^2]。 #### 实现核心功能 接下来展示怎样利用LangChain的核心组件来搭建这样一个系统。以下是部分关键代码片段: ##### 导入依赖项 ```python from langchain import LLMChain, ChatOpenAI import os ``` ##### 配置语言模型参数 ```python os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here" chat_model = ChatOpenAI( temperature=0, model_name="text-davinci-003", openai_api_key=os.getenv('OPENAI_API_KEY') ) ``` 此处设置了温度值为零意味着生成的结果将完全遵循给定输入而不会有任何随机变化;选择了特定版本的语言模型(`model_name`)并通过环境变量读取到OpenAI平台上的个人认证令牌[^5]。 ##### 定义提示模板 ```python def get_prompt(): from langchain.prompts.prompt import PromptTemplate template = """You are a helpful assistant who can answer questions about the weather and provide news updates. Answer as concisely as possible.""" return PromptTemplate(input_variables=[], template=template) ``` 这段代码定义了一个简单的提示字符串作为指导原则告知AI应该如何作答。 ##### 组合链路形成完整的pipeline ```python chain_create = LLMChain(llm=chat_model, prompt=get_prompt()) response = chain_create.run() print(response) ``` 最后一步就是把之前初始化好的各个部件串联起来构成一条工作流管道,并执行run方法触发整个过程从而得到最终输出结果。 #### 扩展高级特性 对于更复杂的业务需求,则需引入额外的技术栈支持,例如采用Neo4j AuraDB实例来进行关系型数据分析或者优化检索效率等操作[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值