PID控制学习--原理(一)

目录

一、PID控制原理与程序流程

1、过程控制

2、PID调节各个单元的作用

二、数字PID控制器

1、模拟PID控制规律的离散化

2、数字PID控制器的差分方程

3、常见的控制方式

4、PID算法的两种形式

三、PID算法的程序流程

1、增量型PID算法的程序流程

2、位置型PID控制的程序流程

3、程序流程

四、标准PID算法的改进

1、微分项的改进

2、微分线性和输入滤波

3、积分项的改进

4、消除积分不灵敏区


 

一、PID控制原理与程序流程

1、过程控制

对生产过程某一或某些物理参数进行自动控制。

模拟控制系统:

               图1-1 基本模拟反馈控制回路

被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器按照一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。

微机过程控制系统:

           图1-2 微机过程控制系统原理图

以微型计算机作为控制器,控制规律的实现,是通过软件来完成的。改变控制规律,只要改变相应的程序即可。

模拟PID调节器:

                        图1 模拟PID控制系统原理框图

PID调节器是一种线性调节器,它将给定的r(t)的值与实际输出的c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。

(1)、PID调节器的微分方程

 

式中 e(t) = r(t) - c(t)

(2)、PID调节器的传输函数

   

2、PID调节各个单元的作用

(1)、比例单元P:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器立即产生控制作用以减小偏差。

(2)、积分单元I:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数TI,TI越大,积分作用越弱,反之则越强。

(3)、微分单元D:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

二、数字PID控制器

1、模拟PID控制规律的离散化

                 表1 模拟形式与离散化形式

2、数字PID控制器的差分方程

式中                      称为比例项

                         称为积分项

        称为微分项

3、常见的控制方式

4、PID算法的两种形式

(1)、位置型控制

           图3 位置型PID控制流程图

(2)、增量型控制

           图4 增量型PID控制流程图 

例:设有一温度控制系统,温度测量范围是0~600℃,温度采用PID控制,控制指标为450±2℃。已知比例系数Kp=4,积分时间Ti=60s,微分时间Td=5s,采样周期T=5s。当测量值c(n)=448,c(n-1)=449,c(n-2)=442时,计算增量输出

。若u(n-1)=1860,计算第n次阀位输出u(n)。

      

 

三、PID算法的程序流程

1、增量型PID算法的程序流程

增量型PID算法的算式:

2、位置型PID控制的程序流程

位置型PID算法的程序流程只需在增量型PID算法的程序流程基础上增加一次加运算

3、程序流程

      图5 增量型PID算法和位置型PID算法程序流程

四、标准PID算法的改进

1、微分项的改进

(1)、不完全微分型PID控制算法

                          图6 不完全微分型PID控制算法 

(2)完全微分和不完全微分作用的区别

                     图7  完全微分与不完全微分的区别 

(3)、不完全微分型PID算法的差分方程

2、微分线性和输入滤波

(1)、微分先行

微分先行是把对偏差的微分改为对被控量的微分,这样,在给定值变化时,不会

产生输出的大幅度变化。而且由于被控量一般不会突变,即使给定值已发生改变,

被控量也是缓慢变化的,从而不致引起微分项的突变。微分项的输出增量为

(2)、输入滤波

输入滤波就是在计算微分项时,不是直接应用当前时刻的误差e(n),而是采用滤

波值e(n),即用过去和当前四个采样时刻的误差的平均值,再通过加权求和形式

近似构成微分项

3、积分项的改进

抗积分饱和

积分作用虽能消除控制系统的静差,但它也有一个副作用,即会引起积分饱和。在偏差始终存在的情况下,造成积分过量。当偏差方向改变后,需经过一段时间后,输出u(n)才脱离饱和区。这样就造成调节滞后,使系统出现明显的超调,恶化调节品质。这种由积分项引起的过积分作用称为积分饱和现象。

克服积分饱和的方法:

(1)、积分限幅法

积分限幅法的基本思想是当积分项输出达到输出限幅值时,即停止积分项的计算,这时积分项的输出取上一时刻的积分值。其算法流程如图5-2-4所示。

(2)、积分分离法

积分分离法的基本思想是在偏差大时不进行积分,仅当偏差的绝对值小于一预定的门限值ε时才进行积分累积。这样既防止了偏差大时有过大的控制量,也避免了过积分现象。其算法流程如图5-2-5

                   

    图8 积分限幅法程序流程                          图9 积分分离法程序流程

 

(3)、变速积分法

变速积分法的基本思想是在偏差较大时积分慢一些,而在偏差较小时积分快一些,以尽快消除静差。即用代替积分项中的

4、消除积分不灵敏区

积分不灵敏区产生的原因

                

当计算机的运行字长较短,采样周期T也短,而积分时间TI又较长时,容易出现小于字长的精度而丢数,此积分作用消失,这就称为积分不灵敏区。

 

欢迎关注我的公众号:

                     编程技术与生活(ID:hw_cchang)

 

### 回答1: 标准PID控制算法的程序流程图如下: 1. 初始化PID参数:将比例系数Kp、积分系数Ki和微分系数Kd设定为合适的初始值,并将累积误差sum_error初始化为0。 2. 循环运行:进入个循环,以固定的时间间隔执行PID控制算法。 3. 读取当前的系统状态:获取当前的反馈信号,即系统的实际输出值。 4. 计算当前误差:将目标值与当前的反馈信号相减,得到当前的误差error。 5. 累积误差计算:将当前误差error与之前的误差进行累加,得到累积误差sum_error。 6. 计算控制量:利用PID算法,将比例项、积分项和微分项分别乘以对应的系数Kp、Ki和Kd,得到控制量control。 7. 输出控制量:将计算得到的控制量control输出给执行器,如电机或阀门。 8. 更新误差:将当前误差error保存为上个时间步的误差,以备下次循环使用。 9. 延时等待:等待固定的时间间隔,然后回到第3步读取系统状态。 以上是标准PID控制算法的程序流程图,通过不断地计算误差、调整控制量,以实现将系统的实际输出逼近目标值。 ### 回答2: 标准PID控制算法的程序流程图如下: 1. 开始程序 2. 获取当前系统的反馈信号(般是传感器采集到的实际值) 3. 计算误差,即目标值与实际值之间的差值 4. 根据PID控制算法计算控制量,包括比例项(Proportional)、积分项(Integral)和微分项(Derivative) 5. 设置并更新积分项的累积误差,用于补偿系统稳态误差 6. 设置并更新微分项的变化量,用于增强系统的响应速度和稳定性 7. 计算控制量,并根据指定的范围进行限制,以防止控制量超出可执行范围 8. 输出控制量,将其送给执行器或下控制模块 9. 等待定的采样周期,继续执行 10. 返回步骤2,循环执行上述步骤 11. 结束程序 在这个基本的程序流程图中,比例项使系统能够对误差进行快速响应,积分项用于消除系统的稳态误差,微分项用于抑制系统的振荡。不同的PID控制算法可以根据实际需求对比例、积分和微分系数进行调整。这个流程图可以作为PID控制算法的基础,根据具体应用进行扩展和优化。 ### 回答3: 标准PID(比例-积分-微分)控制算法的程序流程图如下: 1. 初始化参数和变量: - 设定目标值(Setpoint)和反馈值(Feedback); - 设定比例系数(Kp)、积分系数(Ki)和微分系数(Kd); - 初始化误差项(error)、累计误差项(integral)和上次误差项(previous_error)。 2. 循环执行控制算法- 计算误差项(error = Setpoint - Feedback); - 更新累计误差项(integral = integral + error); - 计算微分项(derivative = error - previous_error); - 计算控制输出值(output = Kp * error + Ki * integral + Kd * derivative); - 将上次误差项更新为当前误差项(previous_error = error)。 3. 输出控制信号: - 使用output作为控制信号,执行相应的控制操作; - 延时段时间,等待系统响应。 4. 返回第2步,继续执行控制算法。 标准PID控制算法通过不断计算和调整控制输出值,使得误差逐渐减小,从而实现对系统的稳定控制。比例项用于根据当前误差项直接计算控制输出值,积分项用于消除系统永久偏差,微分项用于预测误差的未来变化趋势。这些项的权重由相应的系数(Kp、Ki和Kd)决定,根据具体应用需求进行调整。程序流程图中的循环执行部分保证了实时的控制操作,通过不断重复计算和调整的过程,使控制系统能够持续跟踪目标值并对系统进行调节。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cchangcs

谢谢你的支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值