初学floyd算法

初学floyd算法

从浙江大学数据结构课程上初学floyd多源最短路算法。
下面记录下我的理解:
Dk[i][j]记为在编号k顶点的加入下,i→j的最短路径,所以假设有n个元素,k为从0开始一直到n-1。从D0一直到Dn-1[i][j]一直递推就给了i到j的最短距离。
一开始的D矩阵可以初始化为邻接矩阵,没有变相邻的位置就可移植为无穷大,方便后面依次比较减小,对角线元素为0;
如果把k加入进去后,两端最短距离之和小于之前的距离,即D[i][k]+D[k][j]<D[i][j]就更新D[i][j].

/* 邻接矩阵存储 - 多源最短路算法 */

bool Floyd( MGraph Graph, WeightType D[][MaxVertexNum], Vertex path[][MaxVertexNum] )
{
    Vertex i, j, k;

    /* 初始化 */
    for ( i=0; i<Graph->Nv; i++ )
        for( j=0; j<Graph->Nv; j++ ) {
            D[i][j] = Graph->G[i][j];
            path[i][j] = -1;
        }

    for( k=0; k<Graph->Nv; k++ )
        for( i=0; i<Graph->Nv; i++ )
            for( j=0; j<Graph->Nv; j++ )
                if( D[i][k] + D[k][j] < 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值