- 博客(444)
- 资源 (10)
- 收藏
- 关注

原创 ubuntu 配置cuda+mxnet+jupyter+pytorch+tensorflow
目录1.安装NVIDIA驱动1.1下载驱动1.2卸载原来的1.3禁用nouveau驱动1.4禁用X-Window服务1.5命令行安装1.6测试2.安装cuda2.1下载cuda2.2安装2.3环境变量配置2.4测试3.安装cudnn3.1下载cudnn3.2安装3.3下载runtime library,developer librar......
2019-03-29 11:30:56
2692
1

原创 centos7 配置cuda+mxnet+jupyter+pytorch+tensorflow1.14
目录1.安装wget2.安装anaconda3.安装nvidia驱动+cuda+cudnn3.1安装显卡驱动3.2安装cuda3.3安装cudnn4.安装pip5.安装mxnet6.处理matplotlib7.安装pytorch8.安装tensorflow9.配置jupyter1.安装wgetyum -y install wge...
2019-03-13 16:18:35
1546
原创 DDP学习
不用手动指定RANK,WORLD_SIZE,LOCAL_RANK用torchrun或者python -m torch.distributed.launch就会自动设置输入则得到输入则得到输入则得到。
2025-06-02 14:12:31
870
原创 airflow学习
背景:如果你直接打包一个whl到pypiserver,然后安装的话就会发现需要安装的包太多了,尤其是要装torch的时候,因此可以自定义一个容器,以后worker直接用自定义的镜像就会快很多Dockerfile。
2025-05-25 22:24:30
989
原创 Pypiserver
测试网页http://localhost:10005/simple/如果你用的wsl,可以用powershell查查被排除的端口。安装htpasswd。
2025-05-25 20:59:40
144
原创 圆锥曲线练习
设Ax1y1Bx2y2)lykx2显然y0符合题意当k0联立l和C(k221x24k2x4k2−10Δ0⇒−22k22由韦达定理x1x2−21k24k2A和B的中点为D2x1x22y1y2由GD和l垂直得2x1x2−02y1y2。
2024-09-12 22:14:49
1050
原创 wandb本地部署
如果你的过期了license过期了,可以发邮件给contact@wandb.com。然后在update lincense里复制进去。(有可能失败,就关了docker再开一次)点update settings。有就复制,没有就创建。
2024-07-20 13:09:27
1552
1
原创 windows docker nvidia wsl2
(nvidia/cuda表示仓库,12.5.1-cudnn-devel-ubuntu22.04 nvidia-smi表示tag)下载驱动(GeForce Experience里的也可以)找个nvidia镜像下载,我这是cudnn-devel。如果下的是cudnn-devel,可以顺便检查cuda。运行(和linux不同的是,win似乎没有。
2024-07-17 23:18:34
628
原创 实数系和复数系-习题
出去有明确的相反的说明以外,本习题中所提到的数,都理解为实数1.如果r(r≠0)r\left( r\neq 0 \right)r(r=0)是有理数而xxx是无理数,证明r+xr + xr+x及rxrxrx是无理数证明:假设r+xr + xr+x是有理数,则x=r+x−rx = r + x - rx=r+x−r是有理数,矛盾假设rxrxrx是有理数,则x=rx/rx = rx / rx=rx/r是有理数,矛盾2.证明不存在平方为12的有理数证明:假设p,q∈Q,gcd(p,q)=1,(pq)2=1
2024-06-20 02:44:12
626
原创 centos error 2002 (hy000): can‘t connect to local mysql server through socket ‘/tmp/mysql.sock‘ (2)
查看/etc/my.cnf.d/mysql-server.cnf。发先这个是因为用navicat能连接上。发现链接的socker也存在。
2024-06-12 10:54:23
278
原创 The Art of Drafting: A Team-Oriented Hero Recommendation System for Multiplayer Online Battle Arena
DOTA2 Radiant(天辉)和Dire_(夜魇)以天辉为例(先手选人)n2n=2n2玩家数量S⊂ZNS⊂ZN游戏状态,s∈Ss \in Ss∈S是一个NNN维向量,表示一个游戏状态;NNN是总英雄数量si1Radiant−1Dire0otherwisesi⎩⎨⎧1−10RadiantDireotherwiseSTS_{T}ST终态集合,bp结束ρS→RadiantDireρ。
2024-06-10 12:09:42
993
原创 ModuleNotFoundError: No module named ‘sklearn.neural_network.multilayer_perceptron‘
python3.6.10,和python3.8.10是可以的(目测3.7也可以)python3.9.0和python3.10.0不行。经过一些玄学尝试,最后发现,似乎和版本有问题。省流:换python3.8及以下。查到有的资料[1]说。
2024-06-06 11:32:22
573
原创 数列与极限(下)
定义 3.38 设有复数序列{cn}\left\{ c_{n} \right\}{cn},级数∑n=0∞cnzn\sum_{n=0}^{\infty} c_{n} z^nn=0∑∞cnzn叫做幂级数(power series)。cnc_{n}cn叫做这级数的系数(coefficients);zzz是复数 一般地说,这个级数收敛或发散在于数zzz的选取,准确地说,联系着每个幂级数有一个圆,叫做收敛圆,如果zzz在这圆以内,就收敛,如果zzz在这圆外,就发散。(为了能概括所有的清醒,
2024-05-03 19:37:51
698
原创 数列与级数(中)
如果没有相反的声明,所考虑的一切序列和级数都是复数值的定义 3.21 设有序列{an}\left\{ a_{n} \right\}{an},我们用∑n=pqan(p≤q)\sum_{n=p}^{q}a_{n} \left( p \le q \right) n=p∑qan(p≤q)表示和ap+ap+1+⋯+aqa_p + a_{p+1} + \cdots + a_{q}ap+ap+1+⋯+aq。联系着{an}\left\{ a_{n} \right\}{an},作成序列{sn}\left
2024-05-03 19:37:12
912
原创 数列与级数(上)
3.1 定义 度量空间XXX中的序列{pn}\left\{ p_{n} \right\}{pn}叫做收敛的(converge),如果有一个下述性质的点p∈Xp \in Xp∈X:对于每个ε>0\varepsilon >0ε>0,有一个正整数NNN,使得n≥Nn \ge Nn≥N时,d(pn,p)
2024-05-03 19:20:24
1016
原创 vscode 配置与插件记录
pylance在setting.json里这么配置,这样你保存时就会自动format。(不用右键了)},另外把默认格式化器放在python scope下,就不会影响其他默认格式化器(比如js项目的eslint或者prettier)
2024-04-29 10:36:35
5786
原创 Supervised Learning Achieves Human-Level Performance in MOBA Games: A Case Study of Honor of Kings
提出绝悟-SL(JueWu-SL)将宏观战略(macro-strategy)和微观管理(micromanagement)以监督和端到端的方式整合到神经网络中。 在王者荣耀上测试,达到有最高的水准
2024-04-29 10:27:07
14708
原创 基础拓扑-习题(下)
17.令EEE是所有x∈[0,1]x \in \left[ 0,1 \right]x∈[0,1],其十进小数展开式中只有数码444和777者。EEE是否可数?EEE是否在[0,1]\left[ 0,1 \right][0,1]中稠密?EEE是否紧?EEE是否完全证明:不可数,类似康托对角线不稠密,000不是EEE中的点,也不是EEE的极限点显然EEE有界设p=0.p1p2⋯p=0.p_{1}p_{2}\cdotsp=0.p1p2⋯是EEE的极限点,若p∉Ep \not\in Ep∈E,则存在最小
2024-04-23 22:32:52
619
原创 基础拓扑-习题(上)
1.证明空集是任何集合的子集证明:假设∅⊄A\emptyset \not\subset A∅⊂A,存在x∈∅,x∉Ax \in \emptyset,x \not\in Ax∈∅,x∈A,矛盾2.如果存在不全为零的整数a0,a1,⋯ ,ana_{0}, a_{1}, \cdots, a_{n}a0,a1,⋯,an,而复数zzz满足a0zn+a1zn−1+⋯+an−1z+an=0a_{0}z^n + a_{1}z^{n-1}+ \cdots + a_{n-1}z + a_{n} = 0
2024-04-23 22:28:50
925
devcon.zip
2019-08-19
禁用触摸板压缩包devcon.7z
2019-08-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人