[ 并查集 复杂度分析 杂题 ] Codeforces920E Connected Components?

记原图的补图中每个点的度数为 d i d_i di
先找出 d i d_i di 最小的点,将与其有边相连的点作为一个连通块,其他每个点单独作为一个连通块。暴力枚举 2 2 2 个连通块,再枚举其中的点,查询是否在原图中有边,有边则合并。
这样显然是正确的,然后就是复杂度的问题。
由于刚开始选的是 d i d_i di 最小的点,所以 d i ≤ ⌊ 2 m n ⌋ d_i \le \lfloor{2m\over n}\rfloor din2m
考虑第 1 1 1 个连通块与其他连通块的枚举,枚举次数为 O ( n ⌊ 2 m n ⌋ ) O(n\lfloor{2m\over n}\rfloor) O(nn2m) ,即 O ( m ) O(m) O(m)
考虑其他连通块间的枚举,由于总连通块数 ≤ ⌊ 2 m n ⌋ + 1 \le \lfloor{2m\over n}\rfloor+1 n2m+1 ,次数为 O ( ⌊ 2 m n ⌋ 2 ) O(\lfloor{2m\over n}\rfloor^2) O(n2m2)
⌊ m n ⌋ ≤ 200000 \lfloor{m\over n}\rfloor\le \sqrt{200000} nm200000 ,总复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn)

#include<bits/stdc++.h>
using namespace std;
const int N=200010;
map<int,bool>M[N];
vector<int>a[N],g[N];
vector<int>c;
int k,n,m,x,y,t,mn;
int cnt=1;
int f[N],sz[N];
bool b[N];
int find(int x){
	return f[x]==x?x:f[x]=find(f[x]);
}
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		scanf("%d%d",&x,&y);
		g[x].push_back(y);g[y].push_back(x);
		M[x][y]=M[y][x]=1;
	}
	mn=n+1;
	for(int i=1;i<=n;i++)
		if(g[i].size()<mn)mn=g[i].size(),t=i;
	for(int i=0;i<g[t].size();i++)b[g[t][i]]=1;
	for(int i=1;i<=n;i++)
		if(!b[i])a[1].push_back(i);else a[++cnt].push_back(i);
	for(int i=1;i<=cnt;i++)f[i]=i;
	for(int i=1;i<cnt;i++)
		for(int j=i+1;j<=cnt;j++)
			if(find(i)!=find(j)){
				bool fl=0;
				for(int k=0;!fl&&k<a[i].size();k++)
					for(int l=0;l<a[j].size();l++)
						if(!M[a[i][k]][a[j][l]]){
							fl=1;
							break;
						}
				if(fl)f[f[i]]=f[j];
			}
	for(int i=1;i<=cnt;i++)sz[find(i)]+=a[i].size();
	for(int i=1;i<=cnt;i++)
		if(find(i)==i)c.push_back(sz[i]);
	sort(c.begin(),c.end());
	printf("%d\n",c.size());
	for(int i=0;i<c.size();i++)printf("%d ",c[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值