[ 树形DP 贪心 ] Codeforces958B2 Maximum Control (medium)

可以发现最优的选点方案一定包含直径的 2 个端点,而且选的一定是叶子节点。
把直径的一个端点作为根,那么所有方案都会选根。这样每次多选一个点都是一段从叶子向根的路径。记下所有路径,每次取最大值就好了。

#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int k,n,m,x,y;
int h[N],nx[N<<1],t[N<<1],num;
int d[N];
int son[N],dp[N],Rt;
int a[N],cnt,Ans[N];
void Add(int x,int y) {
    t[++num]=y;nx[num]=h[x];h[x]=num;
}
void Dfs(int x,int y) {
    d[x]=d[y]+1;
    for(int i=h[x];i;i=nx[i])
        if(t[i]!=y) Dfs(t[i],x);
    if(d[x]>d[Rt]) Rt=x;
}
void DP(int x,int y) {
    for(int i=h[x];i;i=nx[i])
        if(t[i]!=y) {
            DP(t[i],x);
            if(dp[t[i]]>dp[son[x]]) son[x]=t[i];
        }
    dp[x]=dp[son[x]]+1;
    for(int i=h[x];i;i=nx[i])
        if(t[i]!=y&&t[i]!=son[x]) a[++cnt]=dp[t[i]];
}
int main() {
    scanf("%d",&n);
    for(int i=1;i<n;i++) scanf("%d%d",&x,&y),Add(x,y),Add(y,x);
    Dfs(1,0);
    DP(Rt,0);a[++cnt]=dp[Rt];
    sort(a+1,a+cnt+1);
    for(int i=cnt;i;i--) Ans[cnt-i+2]=Ans[cnt-i+1]+a[i];
    Ans[1]=1;
    for(int i=1;i<=n;i++) printf("%d ",i<=cnt+1?Ans[i]:n);
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/gjghfd/article/details/79973712
个人分类: DP 贪心
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭