B2. Maximum Control (medium)+树的直径+思维

B2. Maximum Control (medium)
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The Resistance is trying to take control over as many planets of a particular solar system as possible. Princess Heidi is in charge of the fleet, and she must send ships to some planets in order to maximize the number of controlled planets.

The Galaxy contains N planets, connected by bidirectional hyperspace tunnels in such a way that there is a unique path between every pair of the planets.

A planet is controlled by the Resistance if there is a Resistance ship in its orbit, or if the planet lies on the shortest path between some two planets that have Resistance ships in their orbits.

Heidi has not yet made up her mind as to how many ships to use. Therefore, she is asking you to compute, for every K = 1, 2, 3, ..., N, the maximum number of planets that can be controlled with a fleet consisting of K ships.

Input

The first line of the input contains an integer N (1 ≤ N ≤ 105) – the number of planets in the galaxy.

The next N - 1 lines describe the hyperspace tunnels between the planets. Each of the N - 1 lines contains two space-separated integers u and v (1 ≤ u, v ≤ N) indicating that there is a bidirectional hyperspace tunnel between the planets u and v. It is guaranteed that every two planets are connected by a path of tunnels, and that each tunnel connects a different pair of planets.

Output

On a single line, print N space-separated integers. The K-th number should correspond to the maximum number of planets that can be controlled by the Resistance using a fleet of K ships.

Examples
Input
Copy
3
1 2
2 3
Output
Copy
1 3 3 
Input
Copy
4
1 2
3 2
4 2
Output
Copy
1 3 4 4 
Note

Consider the first example. If K = 1, then Heidi can only send one ship to some planet and control it. However, for K ≥ 2, sending ships to planets 1 and 3 will allow the Resistance to control all planets.

#include <bits/stdc++.h>
#define fi first
#define se second
#define rep(i,n) for(int i = 0; i < (n); ++i)
#define rrep(i,n) for(int i = 1; i <= (n); ++i)
#define drep(i,n) for(int i = (n)-1; i >= 0; --i)
#define srep(i,s,t) for (int i = s; i < t; ++i)
#define rng(a) a.begin(),a.end()
#define maxs(x,y) (x = max(x,y))
#define mins(x,y) (x = min(x,y))
#define limit(x,l,r) max(l,min(x,r))
#define lims(x,l,r) (x = max(l,min(x,r)))
#define pb push_back
#define sz(x) (int)(x).size()
#define pcnt __builtin_popcountll
#define uni(x) x.erase(unique(rng(x)),x.end())
#define snuke srand((unsigned)clock()+(unsigned)time(NULL));
#define show(x) cout<<#x<<" = "<<x<<endl;
#define PQ(T) priority_queue<T,v(T),greater<T> >
#define bn(x) ((1<<x)-1)
#define dup(x,y) (((x)+(y)-1)/(y))
#define newline puts("")
#define v(T) vector<T>
#define vv(T) v(v(T))
using namespace std;
typedef long long int ll;
typedef unsigned uint;
typedef unsigned long long ull;
typedef pair<int,int> P;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vl;
typedef vector<P> vp;
inline int in() { int x; scanf("%d",&x); return x;}
template<typename T>inline istream& operator>>(istream&i,v(T)&v)
{rep(j,sz(v))i>>v[j];return i;}
template<typename T>string join(const v(T)&v)
{stringstream s;rep(i,sz(v))s<<' '<<v[i];return s.str().substr(1);}
template<typename T>inline ostream& operator<<(ostream&o,const v(T)&v)
{if(sz(v))o<<join(v);return o;}
template<typename T1,typename T2>inline istream& operator>>(istream&i,pair<T1,T2>&v)
{return i>>v.fi>>v.se;}
template<typename T1,typename T2>inline ostream& operator<<(ostream&o,const pair<T1,T2>&v)
{return o<<v.fi<<","<<v.se;}
template<typename T>inline ll suma(const v(T)& a) { ll res(0); for (auto&& x : a) res += x; return res;}
const double eps = 1e-10;
const ll LINF = 1e18;
const int INF = 1001001001;
#define dame { puts("-1"); return 0;}
#define yn {puts("YES");}else{puts("NO");}
const int MX = 200005;

vi to[MX];

P pfs(int v, int d=0, int p=-1) {
  P res(d,v);
  rep(i,sz(to[v])) {
    int u = to[v][i];
    if (u == p) continue;
    P r = pfs(u,d+1,v);
    maxs(res,r);
  }
  return res;
}

int used[MX];
int efs(int v, int tv, int p=-1) {
  if (v == tv) {
    used[v] = 1;
    return 1;
  }
  rep(i,sz(to[v])) {
    int u = to[v][i];
    if (u == p) continue;
    int r = efs(u,tv,v);
    if (r != -1) {
      used[v] = 1;
      return r+1;
    }
  }
  return -1;
}

vi s;
int dfs(int v, int p=-1) {
  vi x;
  rep(i,sz(to[v])) {
    int u = to[v][i];
    if (u == p || used[u]) continue;
    int r = dfs(u,v);
    x.pb(r);
  }
  if (sz(x) == 0) return 1;
  sort(rng(x));
  int res = x.back(); x.pop_back();
  s.insert(s.end(),rng(x));
  return res+1;
}


int main() {
  int n;
  scanf("%d",&n);
  rep(i,n-1) {
    int a,b;
    scanf("%d%d",&a,&b);
    --a; --b;
    to[a].pb(b);
    to[b].pb(a);
  }
  vi ans;
  ans.pb(1);
  int v = pfs(0).se;
  int u = pfs(v).se;
  ans.pb(efs(u,v));
  rep(i,n) {
    if (!used[i]) continue;
    int x = dfs(i)-1;
    if (x) s.pb(x);
  }
  sort(rng(s));
  while (sz(s)) {
    ans.pb(ans.back()+s.back());
    s.pop_back();
  }
  while (sz(ans) < n) ans.pb(n);
  cout<<ans<<endl;
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值