我的机器学习入门之路(中)——深度学习(自然语言处理)

这篇博客介绍了作者学习深度学习(特别是自然语言处理NLP)的路径,包括NLP研究问题、深度学习基础和框架使用、以及NLP深入学习的资源。推荐了《DeepLearning.ai深度学习笔记》作为深度学习入门教材,同时提到了TensorFlow和PyTorch的学习资源。对于NLP,作者推荐了斯坦福CS224n课程,并提供了词向量、RNN、LSTM、GRU、TextCNN、Seq2seq、Attention、Transformer等相关模型的资料链接。
摘要由CSDN通过智能技术生成

继上一篇《我的机器学习入门之路(上)——传统机器学习》,这一篇博客主要记录深度学习(主要是自然语言处理)这一块内容的学习过程。以下均将自然语言处理简称NLP。

这一块内容的学习路线分为三部分:明确NLP的研究问题及传统的方法有哪些、深度学习(NLP)基础及深度学习框架的使用、NLP的深入学习。

 

一、明确NLP的研究问题及传统的方法有哪些

不像机器学习中研究的问题一般都是直接的分类或回归,在NLP中,有比较多样的分析,如分词、依存句法分析等。所以可以先看看一本书《python自然语言处理》。这本书可以比较快速地过一遍。

 

二、深度学习(NLP)基础及深度学习框架的使用

开门见山,深度学习入门资源推荐:黄海广博士主编的《DeepLearning.ai深度学习笔记》,由于版权关系,大家可以自行搜索。

原因:就如很多学习机器学习的人都人手一本西瓜书,我看很多学习深度学习的人都人手一本《深度学习》(那本花书),我也去看了那本花书,感觉不太适合我。《DeepLearning.ai深度学习笔记》这份笔记讲得非常通俗易懂,但又不失一定的深度,很适合作为深度学习的入门教材,总共七百多页,几天就能学完了,从神经网络基础,到CNN,计算机视觉中的深度学习,再到序列模型,NLP的很多问题,都有讲解,是相对全面的。

在有了深度学习的基础知识之后,就可以学习一些开源的深度学习框架的使用了,我选的是TensorFlow和PyTorch。

深度学习框架PyTorch书籍推荐:陈云的《深度学习框架PyTorch:入门与实践》,这本书写得比较接地气,也有相应的实战代码(GitHub上可下载)。所以边看这本书,边自己做做书上的项目,就能很快入门pytorch了。

深度学习框架TensorFlow书籍推荐:黄文坚的《TensorFlow实战》。

一些我收藏的资源:

1、TensorFlow相关

TensorFlow在Windows 10 64位下的安装:https://blog.csdn.net/u010099080/article/details/53418159

WIN10安装TENSORFLOW(GPU版本)详解:https://zhuanlan.zhihu.com/p/37086409

TensorFlow指定GPU进行训练:https://blog.csdn.net/u010238520/article/details/76165736

TensorFlow获取可用GPU设备:https://blog.csdn.net/weixin_35653315/article/details/71403386

TensorFlow自动求导原理:https://blog.csdn.net/qq_25094489/article/details/79390484

『深度长文』Tensorflow代码解析(一):https://zhuanlan.zhihu.com/p/25646408

2、PyTorch相关 

新手如何入门pytorch?:https://www.zhihu.com/question/55720139

PyTorch中文文档:https://pytorch.apachecn.org/#/

PyTorch上搭建简单神经网络实现回归和分类的示例:https://blog.csdn.net/quincylk/article/details/86183752

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值