[学习日志]自然语言处理-斯坦福 GRU&NMT

本文对比了GRU和LSTM在处理时间序列数据时的不同,特别关注了它们在处理跨时间链接和连续时间链接上的区别,以及如何通过重置门机制解决梯度问题。着重介绍了机器翻译评价指标BLUE,强调主观性与重叠性在翻译评估中的应用。
摘要由CSDN通过智能技术生成

关于GRUs和LSTMs的区别

GRU

在这里插入图片描述
绿色部分代表夸时间链接
值得注意的是h(t-1)其实包括了上轮的绿色部分
所有绿色部分会被累加的,这不太符合预期,可能会导致梯度爆炸或注意力固定

在这里插入图片描述
所以引入了重置门,即绿色部分
意味着有一些夸时间链接可以被削弱或放弃

这样一来
h(t-1)就专门对应连续时间链接
ht‘专门对应跨时间链接(虽然也包括连续时间,但希望的是跨时间)

h(t-1)是不是有点重复?也不能算重复,大概是为了更多的组合可能吧

LSTM

机器翻译的评价指标——BLUE

问题是翻译是一个很主观的事情,很难有一个量化评估手段。

BLUE的思想

由人工给出一份参考答案,然后看重叠性
所谓重叠性是由词长确定的,比如下图是BLUE3的示意图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值