darknet源码分析之tiny-yolov2模型训练及测试

目录

模型结构

模型训练

模型训练概览

网络结构文件加载

预训练权重文件加载

数据加载


在darknet框架上训练了tiny-yolov2,对于darknet这个C语言框架有了些自己的认识,遂记录于此。darknet在github上的url:https://github.com/pjreddie/darknet,darknet官网:https://pjreddie.com/darknet/,官网有介绍darknet编译及yolo系列所有模型详细介绍。

模型结构

模型训练

为叙述方便,后面我把darknet根目录用root代替。darknet项目从github下载完编译成功后会在root目录生成了darknet可执行文件,root/examples/darknet.c的main函数就是程序执行入口,根据传入的参数argv[1]与字符串比较进入run_detector函数,这个函数里面主要是解析我们传入的各项参数,诸如gpu、datacfg(数据配置文件)、cfg(网络结构文件)、weights(预训练权重文件)等参数。根据我们传入的‘train’参数进入train_detector函数

    char *datacfg = argv[3];
    char *cfg = argv[4];
    char *weights = (argc > 5) ? argv[5] : 0;
    char *filename = (argc > 6) ? argv[6]: 0;
    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, outfile, fullscreen);
    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
    else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
    else if(0==strcmp(argv[2], "valid2")) validate_detector_flip(datacfg, cfg, weights, outfile);
    else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
    else if(0==strcmp(argv[2], "demo")) {
        list *options = read_data_cfg(datacfg);
        int classes = option_find_int(options, "classes", 20);
        char *name_list = option_find_str(options, "names", "data/names.list");
        char **names = get_labels(name_list);
        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, avg, hier_thresh, width, height, fps, fullscreen);
    }

模型训练概览

train_detector里包含了模型训练的所有步骤,包括:解析cfg网络结构文件、加载预训练模型、多线程加载数据、模型训练(前向计算、反向传播、参数更新)、模型保存。

void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
    list *options = read_data_cfg(datacfg);//解析数据配置文件
    char *train_images = option_find_str(options, "train", "data/train.list");//获取训练数据目录
    char *backup_directory = option_find_str(options, "backup", "/backup/");//获取模型保存目录

    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network **nets = calloc(ngpus, sizeof(network));

    srand(time(0));
    int seed = rand();
    int i;
    //多gpu训练,这个我没用过,我用单gpu训练,因此只迭代一次
    for(i = 0; i < ngpus; ++i){
        srand(seed);
#ifdef GPU
        cuda_set_device(gpus[i]);//设置训练时选用那块gpu
#endif
        //解析cfg文件创建网络结构,如果weightfile不为NULL,就用这个预训练权重文件初始化网络模型参数
        nets[i] = load_network(cfgfile, weightfile, clear);
        nets[i]->learning_rate *= ngpus;
    }
    srand(time(0));
    network *net = nets[0];
    //这里有个概念需要弄清楚,训练的batchsize和参数更新的batchsize不等同,考虑到gpu显存不够,
    //比如每次只加载32张图片进行前向计算得到loss,重复这个过程8次并把8次的loss相加进行一次反向
    //传播并更新模型权重。这个过程等同于一次加载256张图片进行训练。这里的net->batch就是举例的32
    //net->subdivisions相当于举例的8,我的gpu只用了1块,所以ngpus=1
    int imgs = net->batch * net->subdivisions * ngpus;
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
    data train, buffer;

    layer l = net->layers[net->n - 1];//取出最后一层(检测层)

    int classes = l.classes;//目标分类的类别数
    float jitter = l.jitter;//后续数据增强会用到

    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args = get_base_args(net);
    args.coords = l.coords;//坐标点个数(xmin,ymin,xmax,ymax)
    args.paths = paths;//训练及所有图片路径
    args.n = imgs;//batchsize
    args.m = plist->size;//训练集大小
    args.classes = classes;
    args.jitter = jitter;
    args.num_boxes = l.max_boxes;//feature map每个cell预测的候选框个数
    args.d = &buffer;
    args.type = DETECTION_DATA;
    //args.type = INSTANCE_DATA;
    args.threads = 64;//默认开多线程读取数据

    pthread_t load_thread = load_data(args);
    double time;
    int count = 0;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net->max_batches){
        if(l.random && count++%10 == 0){
            printf("Resizing\n");
            int dim = (rand() % 10 + 10) * 32;
            if (get_current_batch(net)+200 > net->max_batches) dim = 608;
            //int dim = (rand() % 4 + 16) * 32;
            printf("%d\n", dim);
            args.w = dim;
            args.h = dim;

            pthread_join(load_thread, 0);
            train = buffer;
            free_data(train);
            load_thread = load_data(args);

            #pragma omp parallel for
            for(i = 0; i < ngpus; ++i){
                resize_network(nets[i], dim, dim);
            }
            net = nets[0];
        }
        time=what_time_is_it_now();
        pthread_join(load_thread, 0);//等待多线程退出
        train = buffer;
        load_thread = load_data(args);

        /*
           int k;
           for(k = 0; k < l.max_boxes; ++k){
           box b = float_to_box(train.y.vals[10] + 1 + k*5);
           if(!b.x) break;
           printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
           }
         */
        /*
           int zz;
           for(zz = 0; zz < train.X.cols; ++zz){
           image im = float_to_image(net->w, net->h, 3, train.X.vals[zz]);
           int k;
           for(k = 0; k < l.max_boxes; ++k){
           box b = float_to_box(train.y.vals[zz] + k*5, 1);
           printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);
           draw_bbox(im, b, 1, 1,0,0);
           }
           show_image(im, "truth11");
           cvWaitKey(0);
           save_image(im, "truth11");
           }
         */

        printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);

        time=what_time_is_it_now();
        float loss = 0;
        //train_networks:网络训练函数
#ifdef GPU
        if(ngpus == 1){
            loss = train_network(net, train);
        } else {
            loss = train_networks(nets, ngpus, train, 4);
        }
#else
        loss = train_network(net, train);
#endif
        //动量法计算损失值
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        //获取当前批次号,打印训练结果
        i = get_current_batch(net);
        printf("%ld: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, i*imgs);
        if(i%100==0){
#ifdef GPU
            if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(net, buff);
        }
        if(i%10000==0 || (i < 1000 && i%100 == 0)){
#ifdef GPU
            if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
#ifdef GPU
    if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    //保存模型
    save_weights(net, buff);
}

网络结构文件加载

load_network函数包括两部分,一个是parse_network_cfg函数,这个函数主要是解析cfg文件,根据cfg文件构建深度学习网络,并根据cfg文件的键值对初始化一些变量、指定该网络层的前向计算函数、后向计算函数、权值更新函数。至于load_weights函数待会再说。

network load_network(char *cfg, char *weights, int clear)
{
    network net = parse_network_cfg(cfg);//解析网络结构文件
    if(weights && weights[0] != 0){
        load_weights(&net, weights);//如果传入了与训练权重文件则加载
    }
    if(clear) *net.seen = 0;
    return net;
}

进入到parse_network_cfg函数里面,会根据层类别不一样做不同的初始化工作,需要注意的是不同层里面一般都有个make_***_layer函数,在这里对一些变量进行了随机初始化,如卷积层初始化了卷积核W和偏置B,还指定了他们的前向、后向计算函数,权值更新函数。

network parse_network_cfg(char *filename)
{
    //把cfg文件解析成一个二级链表,第一级链表存储每个网络层,第二级链表存储各网络层的变量
    list *sections = read_cfg(filename);
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network net = make_network(sections->size - 1);
    net.gpu_index = gpu_index;
    size_params params;

    section *s = (section *)n->val;
    list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    //根据第一层网络初始化一些超参数,这些超参数将影响整个网络训练,比如batchsize、学习率、梯度优化方法等等
    parse_net_options(options, &net);

    params.h = net.h;
    params.w = net.w;
    params.c = net.c;
    params.inputs = net.inputs;
    params.batch = net.batch;
    params.time_steps = net.time_steps;//这个变量是cnn网络才有的,此处忽略
    params.net = net;

    size_t workspace_size = 0;
    //从这一层开始就是真正意义上的网络层了
    n = n->next;
    int count = 0;
    free_section(s);
    fprintf(stderr, "layer     filters    size              input                output\n");
    //下面根据不同的层类型做相应的初始化
    while(n){
        params.index = count;
        fprintf(stderr, "%5d ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        LAYER_TYPE lt = string_to_layer_type(s->type);
        if(lt == CONVOLUTIONAL){
            l = parse_convolutional(options, params);
        }else if(lt == DECONVOLUTIONAL){
            l = parse_deconvolutional(options, params);
        }else if(lt == LOCAL){
            l = parse_local(options, params);
        }else if(lt == ACTIVE){
            l = parse_activation(options, params);
        }else if(lt == RNN){
            l = parse_rnn(options, params);
        }else if(lt == GRU){
            l = parse_gru(options, params);
        }else if (lt == LSTM) {
            l = parse_lstm(options, params);
        }else if(lt == CRNN){
            l = parse_crnn(options, params);
        }else if(lt == CONNECTED){
            l = parse_connected(options, params);
        }else if(lt == CROP){
            l = parse_crop(options, params);
        }else if(lt == COST){
            l = parse_cost(options, params);
        }else if(lt == REGION){
            l = parse_region(options, params);
        }else if(lt == DETECTION){
            l = parse_detection(options, params);
        }else if(lt == SOFTMAX){
            l = parse_softmax(options, params);
            net.hierarchy = l.softmax_tree;
        }else if(lt == NORMALIZATION){
            l = parse_normalization(options, params);
        }else if(lt == BATCHNORM){
            l = parse_batchnorm(options, params);
        }else if(lt == MAXPOOL){
            l = parse_maxpool(options, params);
        }else if(lt == REORG){
            l = parse_reorg(options, params);
        }else if(lt == AVGPOOL){
            l = parse_avgpool(options, params);
        }else if(lt == ROUTE){
            l = parse_route(options, params, net);
        }else if(lt == SHORTCUT){
            l = parse_shortcut(options, params, net);
        }else if(lt == DROPOUT){
            l = parse_dropout(options, params);
            l.output = net.layers[count-1].output;
            l.delta = net.layers[count-1].delta;
#ifdef GPU
            l.output_gpu = net.layers[count-1].output_gpu;
            l.delta_gpu = net.layers[count-1].delta_gpu;
#endif
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        l.truth = option_find_int_quiet(options, "truth", 0);
        l.onlyforward = option_find_int_quiet(options, "onlyforward", 0);
        l.stopbackward = option_find_int_quiet(options, "stopbackward", 0);
        l.dontload = option_find_int_quiet(options, "dontload", 0);
        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
        l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1);
        l.smooth = option_find_float_quiet(options, "smooth", 0);
        option_unused(options);
        net.layers[count] = l;
        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
        free_section(s);
        n = n->next;
        ++count;
        if(n){
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;//上一层的输出就做为当前层的输入
        }
    }
    free_list(sections);
    layer out = get_network_output_layer(net);
    net.outputs = out.outputs;
    net.truths = out.outputs;
    if(net.layers[net.n-1].truths) net.truths = net.layers[net.n-1].truths;
    net.output = out.output;
    net.input = calloc(net.inputs*net.batch, sizeof(float));
    net.truth = calloc(net.truths*net.batch, sizeof(float));
#ifdef GPU
    net.output_gpu = out.output_gpu;
    net.input_gpu = cuda_make_array(net.input, net.inputs*net.batch);
    net.truth_gpu = cuda_make_array(net.truth, net.truths*net.batch);
#endif
    if(workspace_size){
        //printf("%ld\n", workspace_size);
#ifdef GPU
        if(gpu_index >= 0){
            net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        }else {
            net.workspace = calloc(1, workspace_size);
        }
#else
        net.workspace = calloc(1, workspace_size);
#endif
    }
    return net;
}

预训练权重文件加载

void load_weights(network *net, char *filename)

    //第4个参数指定只将[0,net->n)层权重加载到模型,进入到函数里后将根据不同的层类型读取权重文件进行赋值
    load_weights_upto(net, filename, 0, net->n);
}

数据加载

在数据加载函数里开了个线程用于加载数据

pthread_t load_data(load_args args)
{
    pthread_t thread;
    struct load_args *ptr = calloc(1, sizeof(struct load_args));
    *ptr = args;
    if(pthread_create(&thread, 0, load_threads, ptr)) error("Thread creation failed");
    return thread;
}

然后根据传入的args.threads创建多线程下载数据

void *load_threads(void *ptr)
{
    int i;
    load_args args = *(load_args *)ptr;
    if (args.threads == 0) args.threads = 1;
    data *out = args.d;
    int total = args.n;
    free(ptr);
    data *buffers = calloc(args.threads, sizeof(data));
    pthread_t *threads = calloc(args.threads, sizeof(pthread_t));
    for(i = 0; i < args.threads; ++i){
        args.d = buffers + i;
        args.n = (i+1) * total/args.threads - i * total/args.threads;
        threads[i] = load_data_in_thread(args);
    }
    //等待所有线程的数据读取完才执行后续操作
    for(i = 0; i < args.threads; ++i){
        pthread_join(threads[i], 0);
    }
    //将读取到的多个数据块归并到一起(包括数据和标签)
    *out = concat_datas(buffers, args.threads);
    out->shallow = 0;
    for(i = 0; i < args.threads; ++i){
        buffers[i].shallow = 1;
        free_data(buffers[i]);
    }
    free(buffers);
    free(threads);
    return 0;
}

每个子线程里又开一个线程,我还没明白为什么要这么绕。。。

pthread_t load_data_in_thread(load_args args)
{
    pthread_t thread;
    struct load_args *ptr = calloc(1, sizeof(struct load_args));
    *ptr = args;
    if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed");
    return thread;
}

绕来绕去终于见到庐山真面目了,下面又是根据关键字匹配数据加载函数,我这里的type是DETECTION_DATA,跟进去看看

void *load_thread(void *ptr)
{
    //printf("Loading data: %d\n", rand());
    load_args a = *(struct load_args*)ptr;
    if(a.exposure == 0) a.exposure = 1;
    if(a.saturation == 0) a.saturation = 1;
    if(a.aspect == 0) a.aspect = 1;

    if (a.type == OLD_CLASSIFICATION_DATA){
        *a.d = load_data_old(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
    } else if (a.type == REGRESSION_DATA){
        *a.d = load_data_regression(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
    } else if (a.type == CLASSIFICATION_DATA){
        *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.hierarchy, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure, a.center);
    } else if (a.type == SUPER_DATA){
        *a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale);
    } else if (a.type == WRITING_DATA){
        *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
    } else if (a.type == ISEG_DATA){
        *a.d = load_data_iseg(a.n, a.paths, a.m, a.w, a.h, a.classes, a.num_boxes, a.scale, a.min, a.max, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
    } else if (a.type == INSTANCE_DATA){
        *a.d = load_data_mask(a.n, a.paths, a.m, a.w, a.h, a.classes, a.num_boxes, a.coords, a.min, a.max, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
    } else if (a.type == SEGMENTATION_DATA){
        *a.d = load_data_seg(a.n, a.paths, a.m, a.w, a.h, a.classes, a.min, a.max, a.angle, a.aspect, a.hue, a.saturation, a.exposure, a.scale);
    } else if (a.type == REGION_DATA){
        *a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure);
    } else if (a.type == DETECTION_DATA){
        //n:batchsize,paths:所有图片路径,m:所有图片数,w:图片宽,h:图片高,
        //num_boxes:featuremap每个cell需要预测的框个数,classes:类别数,后面的参数用于数据增强
        *a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure);
    } else if (a.type == SWAG_DATA){
        *a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter);
    } else if (a.type == COMPARE_DATA){
        *a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h);
    } else if (a.type == IMAGE_DATA){
        *(a.im) = load_image_color(a.path, 0, 0);
        *(a.resized) = resize_image(*(a.im), a.w, a.h);
    } else if (a.type == LETTERBOX_DATA){
        *(a.im) = load_image_color(a.path, 0, 0);
        *(a.resized) = letterbox_image(*(a.im), a.w, a.h);
    } else if (a.type == TAG_DATA){
        *a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
    }
    free(ptr);
    return 0;
}

待续。。。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 1. 首先,需要准备好训练数据集和标注文件,可以使用标注工具如LabelImg等进行标注。 2. 接着,需要下载darknet框架和yolov4-tiny模型的权重文件。 3. 在darknet目录下,修改配置文件yolov4-tiny.cfg,将其中的batch、subdivisions、classes、filters等参数根据自己的数据集进行修改。 4. 将训练数据集和标注文件放入darknet/data目录下。 5. 在命令行中输入以下命令进行训练: ./darknet detector train data/obj.data cfg/yolov4-tiny.cfg yolov4-tiny.weights 6. 训练过程中可以通过命令行输出的信息来观察训练情况,也可以使用工具如TensorBoard等进行可视化。 7. 训练完成后,可以使用训练好的模型进行目标检测,具体方法可以参考darknet官方文档。 ### 回答2: Darknet是一种流行的开源深度学习框架,它支持各种计算机视觉任务,例如对象检测、分类、语义分割等。Yolov4-tiny是一种基于深度神经网络的对象检测模型,其速度和准确性优于之前的版本,由于其轻量级的特性,适合在边缘设备上进行部署。在使用Darknet训练Yolov4-tiny时,需要以下几个步骤。 1. 数据集准备和标注 准备和标注数据集是深度学习的第一步。数据集包括许多图像,每张图像上都标有框框来标注出对象的位置,同时还需要给每个对象打上标签。这通常需要使用专业的工具,例如LabelImg或VIA。数据集的质量和数量对于模型的准确性至关重要。 2. 修改配置文件 在训练模型之前,需要使用配置文件指定许多参数,例如学习率、训练迭代次数、批量大小等。这些参数的设置将直接影响模型的性能和训练时间。在Yolov4-tiny的配置文件中,将输入图像的大小设置为416x416,并且根据自己的数据集修改标签类别数量、训练、验证和测试集路径等参数。此外,还可以尝试调整不同的超参数来改进模型性能。 3. 下载预训练权重 通常情况下,可以使用预训练的权重来加速模型训练。在Yolov4-tiny的情况下,可以从官方网站下载预训练的权重,并将其作为初始权重进行训练。 4. 开始训练模型 完成配置文件和权重下载后,可以使用Darknet开始训练模型。在命令行中输入相应的命令,包括配置文件路径、权重路径、数据集路径等。训练过程可能需要几个小时到几天,具体时间取决于数据集的大小和复杂性。 5. 评估训练模型模型训练完成后,可以使用测试集对模型进行评估,查看其在不同指标下的表现,例如mAP(mean average precision)。评估结果可以帮助了解模型训练的效果,以及在实际应用中模型的性能如何。 6. 部署模型 最后,可以将训练好的模型部署到边缘设备上进行使用,例如实时对象检测和跟踪。在部署模型时,需要考虑设备的性能和存储容量,并根据具体需求进行优化,例如芯片加速、量化等。 ### 回答3: YoloV4-tiny是一种物体检测算法模型,其可用于实现高效的实时目标检测应用。而darknet则是实现该模型训练的深度学习框架,其可在Linux和Windows平台上运行。下面将详细介绍darknet训练YoloV4-tiny的步骤和方法。 首先,需要在计算机上安装darknet,可通过下载源代码后进行编译安装,也可直接使用已编译好的可执行文件。安装成功后,需要下载训练用的数据集,并将其转换为darknet可用的格式,通常为txt格式的标注文件和jpg格式的图片。将数据集放入darknet目录下的data文件夹中。 接下来,需要准备好yolov4-tiny的配置文件。配置文件包括模型参数、训练参数、数据集路径等,可参照darknet自带的yolov4-tiny.cfg文件进行设置。其中,需要注意的是网络结构的参数需要与数据集的类别数目对应,否则会导致训练结果不准确。另外,还需设置学习率、批次大小、迭代次数等训练参数。 完成配置文件的设置后,就可开始训练模型了。在命令行中输入训练命令,如“./darknet detector train data/obj.data cfg/yolov4-tiny.cfg yolov4-tiny.weights -gpus 0,1”,其中参数含义分别为:数据集路径、配置文件路径、预训练权重路径、使用GPU设备和数量。 训练过程中,darknet会输出每一轮训练的损失值和预测精度,可通过观察损失值变化来判断训练进展情况。训练完成后,会在darknet目录下生成新的权重文件,可用于实际应用。 总的来说,训练YoloV4-tiny需要准备好数据集、配置文件和训练参数,并在darknet中进行训练训练过程需要耗费一定时间和计算资源,但能得到高效、准确的检测模型,适用于各种物体检测应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值