自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 资源 (1)
  • 收藏
  • 关注

原创 YOLOv8/YOLOv7/YOLOv5+CRNN-车牌识别、车牌关键点定位、车牌检测(毕业设计)

本项目通过yolov8/yolov7/yolov5+CRNN训练自己的数据集,实现了一个中文车牌识别、车牌关键点定位、车牌检测算法,可实现12种中文单双层车牌的字符识别:单行蓝牌、单行黄牌、新能源车牌、白色警用车牌、教练车牌、武警车牌、双层黄牌、双层白牌、使馆车牌、港澳粤Z牌、双层绿牌、民航车牌。

2023-12-04 20:06:49 8482 12

原创 YOLOv8/YOLOv7/YOLOv5-火灾检测、烟雾检测系统-界面+视频实时检测+数据集(原创算法-毕业设计)

本项目通过yolov8/yolov7/yolov5训练自己的数据集,并开发可视化界面,实现了一个火灾烟雾摄像头实时检测系统,其主要目标包括:实时监测环境中的烟雾并判定是否为火灾烟雾;提供可靠的火灾烟雾检测结果。可为兄弟们的毕设、课设、大作业等提供参考,可训练自己的数据集,可以换成yolov8各种版本的权重。

2023-10-15 10:20:44 6974 10

原创 YOLOv8/YOLOv7/YOLOv5-电动车头盔检测/摩托车头盔检测、电动车头盔数据集-毕业设计

我们实验室手动收集、整理、标注了TWHD (two wheeler helmet dataset)数据集,包含5448张二轮车图片和对应的xml格式标签。我们对图片中的二轮车整体(two_wheeler)、未戴头盔的人头(without_helmet)、戴头盔的人头(helmet)使用软件进行了手动标注,并按4:1的比例划分训练集与测试集。此外,为了丰富数据集背景,还融合了来自bike helmet dataset以及网络爬虫的738张图片。

2023-09-19 22:27:25 3477 3

原创 疲劳驾驶检测系统-YOLOv8/YOLOv7/YOLOv5-疲劳检测、分心检测、玩手机、抽烟、喝水检测(毕业设计)

本项目通过YOLOv8/YOLOv7/YOLOv5、Dlib和PySide2实现了一个疲劳驾驶检测系统,可为一些同学的课设、大作业等提供参考。该项目分为两个部分,疲劳检测和抽烟、玩手机、喝水分心行为检测。

2023-07-18 15:57:49 7817 7

原创 yolov8/yolov7/yolov5-车辆测距+前车碰撞预警(追尾预警)+车辆检测识别+车辆跟踪测速(原创算法-毕业设计)

本项目通过yolov8/yolov7/yolov5和deepsort实现了一个自动驾驶领域的追尾前车碰撞预警系统,可为一些同学的课设、大作业等提供参考。分别实现了自行车、汽车、摩托车、公交车、卡车的实时目标检测、跟车距离测量、车辆间的相对速度测量、基于人脑反应时间和车辆刹停时间的碰撞预警功能。

2023-01-02 14:57:22 14954 17

原创 yolov8/yolov7/yolov5摩托车检测+电动车检测+摩托车头盔佩戴情况检测+摩托车车牌检测

通过yolov5/7/8训练自己的数据集实现了二轮车相关目标检测,包括摩托(电动)车、二轮车上的载乘人员、载乘人员的头盔佩戴情况、二轮车车牌。可将检测出来的二轮车车牌输入字符识别网络识别车牌内容。

2022-10-16 19:54:02 2680 4

原创 智能交通系统-yolov8/yolov7/yolov5+deepsort车辆跟踪、计数、测速、碰撞检测、违规驶入检测(原创算法-毕业设计)

通过yolov8/yolov7/yolov5和deepsort实现了一个多功能智能交通监控系统,违规进入专用车道检测为本人原创算法。项目包含详细注释和说明文档等,可为课设、毕设提供参考。

2022-06-06 22:30:22 42519 26

原创 标注文件格式转换:xml和json相互转化、xml和txt相互转化、txt和json相互转化

1、xml转json#coding:utf-8import osimport globimport jsonimport shutilimport numpy as npimport xml.etree.ElementTree as ET# 项目根目录下放置data/coco文件夹,里面分别有annotations、train2017、val2017三个文件夹。# 格式转化前要将xml和图片全部放入annotation文件夹中,train2017、val2017里面为空。# 转换后生成的

2022-05-16 09:59:34 2074

原创 深度学习中涉及到的计算机基础知识汇总(持续更新)

**一、windows句柄:**数值上,是一个32位无符号整型(32位系统下);逻辑上,相当于指针的指针;形象理解上,是windows中各个对象的唯一的,固定不变的ID;作用上,windows使用句柄来标识诸如窗口、位图、画笔等对象,通过句柄找到这些对象。二、进程与线程:1、进程在内存中有独立的地址空间,一个程序至少有一个进程,一个进程至少有一个线程。2、线程有自己的堆栈和局部变量,一个线程死掉则整个进程死掉。若要求同时进行共享变量的并发操作,用多线程并发。3、多个线程可共享同一个进程的内存单元,提

2022-04-12 09:35:38 1345

原创 IOU_loss、DIOU_loss、GIOU_loss、CIOU_loss代码实现(分为torch版和numpy版)

几种IOU损失的优缺点对比:直接上代码,需要自取:1、IOU#---------------------numpy实现版----------------------------------------#import numpy as npdef bboxes_iou(boxes1,boxes2): ''' cal IOU of two boxes or batch boxes such as: (1) boxes1 = np.asarray([[0

2022-04-01 11:28:21 4942 2

原创 深度学习模型特征可视化(以yolov4为例)

一般来说,深度学习模型中的可视化分为两种:GAM/Grad_GAM、特征图可视化。

2022-03-29 20:55:22 9509 19

原创 使用Python_Pillow(PIL)库实现图像拼接

代码如下,使用时按需修改参数即可。import PIL.Image as Imageimport os IMAGES_PATH = 'G:/YOLOv4_new_yf/yolo4/new_feature_picture0/' # 图片集地址IMAGES_FORMAT = ['.jpg', '.JPG'] # 图片格式w=608 # 每张小图片的大小h=608 # 每张小图片的大小IMAGE_ROW = 8 # 图片间隔,也就是合并成一张图后,

2022-03-29 19:40:29 2848

原创 深度学习模型训练tips&典型报错解决方案(持续更新)

一、Pytorch页面文件太小,无法完成操作1、可能是python安装根目录磁盘虚拟内存不足,应增大虚拟内存,虚拟内存默认为C盘的2GB。2、可能是对应磁盘空间不足,需清理磁盘空间。3、如使用win10系统,Datalodar可能出现问题,应尝试将num_workers设小一点,或直接置0。4、可能是batch_size设置的太大,显存不够,应调小batch_size。二、使用命令在终端中查看训练时GPU的使用情况(要先进入对应虚拟环境):watch -n 10 nvidia-smi #每10

2022-03-25 10:55:48 5057 1

原创 python类的实例化和继承

1、类中的方法第一个参数一定要是self,且不可省略,self指实例本身。2、init()方法在进行类的实例化时自动执行,该方法必须包含一个self参数,且必须是第一个参数。当认为一些属性是创建实例的时候就应该有,要把该属性放在_init_()中。3、super().init()即继承父类的init方法,同样也可以使用super()去继承父类的其他方法。4、super(mymodel,self).init(),即使用继承字自父类的初始化方法来初始化继承自父类的属性。一般发生继承的时候都要加上这样的父类

2022-02-23 11:38:39 988

原创 python中的复制、浅拷贝和深拷贝的区别

(1)直接复制:传递对象的引用(该引用指向变量的存储地址),若原始值改变,则被赋值的b也会做出相同的改变。b = alist(2)浅拷贝:使用copy库中的copy函数,只拷贝父对象,不拷贝子对象(二级对象)。若原始数据改变,父对象不变,子对象改变。import copyc = copy.copy(alist)(3)深拷贝:使用copy库中的deepcopy函数,父子对象均拷贝。原始数据发生任何改变,深拷贝后的对象均不变。import copyd = copy.deepcopy(alist

2022-02-23 11:18:32 854

原创 正则化机制直观理解

对正则化机制和L0、L1、L2范数的直观理解

2021-11-16 10:05:30 586

深度学习中的GAM注意力机制pytorch实现版本

深度学习中的GAM注意力机制pytorch实现版本

2022-02-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除