7.2 逻辑回归的本质及其损失函数的推导、求解的学习笔记

在上一篇文章介绍了逻辑回归的模型,并详细讲了其推导过程。为了加深印象,在这篇文章中从对数几率的角度再次探索逻辑回归的推导过程,看看逻辑回归为什么要使用sigmoid函数作为假设。

逻辑回归损失函数的推导,也是面试时经常被问到的一个点,我们也从两个角度去学习其损失函数的推导过程。然后再计算损失函数的导数。

1.从对数几率看逻辑回归

1.1 推导过程

一句话总结逻辑回归:

逻辑回归假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。

逻辑回归是一个非线性模型,但是是其背后是以线性回归为理论支撑的。

提出一个与线性模型$ y=\theta^{T} \cdot X_{b} 长 相 类 似 但 不 同 的 新 公 式 : 假 设 特 征 X 所 对 应 的 y 值 是 在 指 数 上 变 化 , 那 么 就 可 以 将 结 果 y 值 取 对 数 , 作 为 其 线 性 模 型 逼 近 的 目 标 。 也 就 是 所 谓 的 “ 对 数 线 性 回 归 ” : 长相类似但不同的新公式:假设特征X所对应的y值是在指数上变化,那么就可以将结果y值取对数,作为其线性模型逼近的目标。也就是所谓的“对数线性回归”: Xyy线线 \ln (y)=\theta^{T} \cdot X_{b} $

在“对数线性回归”的公式中,可以改写为$ y=e{\theta{T} \cdot X_{b}} $。实际上是在求输入空间X到输出空间y的非线性函数映射。对数函数的作用是将线性回归模型的预测值与真实标记联系起来。

因此可以得到一个一般意义上的单调可微的“联系函数”:$ g(a)=\ln (a) $。其本质就是给原来线性变换加上一个非线性变换(或者说映射),使得模拟的函数有非线性的属性,但本质上调参还是线性的,主体是内部线性的调参。

那么对于解决分类问题的逻辑回归来说,我们需要找到一个“联系函数”,将线性回归模型的预测值与真实标记联系起来。

将“概率”转换为“分类”的工具是“阶梯函数”:
p ^ = f ( x ) y ^ = { 0 p ^ ≤ 0.5 1 p ^ > 0.5 \hat{p}=f(x) \quad \hat{y}=\left\{\begin{array}{ll} 0 & \hat{p} \leq 0.5 \\ 1 & \hat{p}>0.5 \end{array}\right. p^=f(x)y^={01p^0.5p^>0.5

但是这个阶梯函数不连续,不能作为“联系函数”g,因此使用对数几率函数来在一定程度上近似阶梯函数,将线性回归模型的预测值转化为分类所对应的概率。
σ ( t ) = 1 1 + e − t \sigma(t)=\frac{1}{1+e^{-t}} σ(t)=1+et1
如果另y为正例,1-y为负例,所谓的“几率”就是二者的比值 y 1 − y \frac{y}{1-y} 1yy。几率反映了样本x为正例的相对可能性。

“对数几率”就是对几率取对数 ln ⁡ y 1 − y \ln \frac{y}{1-y} ln1yy,对数几率实际上就是之前提到的sigmoid函数,将线性模型转化为分类。

如果令 $ y=\frac{1}{1+e{-\theta{T} \cdot X_{b}}}, \quad 1-y=\frac{e{-\theta{T} \cdot X_{b}}}{1+e{-\theta{T} \cdot X_{b}}} 。 带 入 到 对 数 几 率 中 。带入到对数几率中 \ln \frac{y}{1-y}=\theta^{T} \cdot X_{b} $。

可以看出,sigmoid实际上就是用线性回归模型的预测结果取逼近真实值的对数几率,因此逻辑回归也被称为“对数几率回归”。

1.2 面试问题

在有上述的推导之后,再看一个面试问题:

为什么要使用sigmoid函数作为假设?

现在就可以回答了:

因为线性回归模型的预测值为实数,而样本的类标记为(0,1),我们需要将分类任务的真实标记y与线性回归模型的预测值联系起来,也就是找到广义线性模型中的联系函数。如果选择单位阶跃函数的话,它是不连续的不可微。而如果选择sigmoid函数,它是连续的,而且能够将z转化为一个接近0或1的值。

2. 逻辑回归的损失函数

2.1 损失函数推导过程

已经知道逻辑回归的模型:
p ^ = σ ( θ T ⋅ x b ) = 1 1 + e − θ T ⋅ X b y ^ = { 1 p ^ ≥ 0.5 0 p ^ ≤ 0.5 \hat{p}=\sigma\left(\theta^{T} \cdot x_{b}\right)=\frac{1}{1+e^{-\theta^{T} \cdot X_{b}}} \quad \hat{y}=\left\{\begin{array}{ll}1 & \hat{p} \geq 0.5 \\ 0 & \hat{p} \leq 0.5\end{array}\right. p^=σ(θTxb)=1+eθTXb1y^={10p^0.5p^0.5

那么,如何求出未知参数 θ \theta θ呢?

首先回顾一下线性回归。在线性回归中,做法如下:

由于已知 θ T ⋅ x b \theta^{T} \cdot x_{b} θTxb 是估计值,于是用估计值与真值的差来度量模型的好坏。使用MSE(差值的平方和再平均)作为损失函数。然后就可以通过导数求极值的方法,找到令损失函数最小的了。

那么在逻辑回归中,解决思路也大致类似。

逻辑回归和线性回归最大的区别就是:逻辑回归解决的是分类问题,得到的y要么是1,要么是0。而我们估计出来的p是概率,通过概率决定估计出来的p到底是1还是0。因此,也可以将损失函数分成两类:

如果给定样本的真实类别y=1,则估计出来的概率p越小,损失函数越大(估计错误)
如果给定样本的真实类别y=0,则估计出来的概率p越大,损失函数越大(估计错误)
那么将用什么样的函数表示这两种情况呢,可以使用如下函数:

J = { − log ⁡ ( p ^ )  if  y = 1 − log ⁡ ( 1 − p ^ )  if  y = 0 J=\left\{\begin{array}{ll}-\log (\hat{p}) & \text { if } \quad y=1 \\ -\log (1-\hat{p}) & \text { if } \quad y=0\end{array}\right. J={log(p^)log(1p^) if y=1 if y=0

分析上面的公式:

当y=1时,损失函数为 − log ⁡ ( p ^ ) -\log (\hat{p}) log(p^)。特点是: p ^ \hat{p} p^越趋于0,损失(loss)越大;越趋于1,损失(loss)越小。

分析如下: J = − log ⁡ ( p ^ ) J=-\log (\hat{p}) J=log(p^) 是一个单调递减函数,且概率p的值域只能是[0,1]之间,因此只有函数的上半部分。我们看到当概率p取0(即预估的分类结果y=0)时,loss值是趋近于正无穷的,表明我们分错了(实际分类结果是1)。
当y=0时,损失函数为 − log ⁡ ( 1 − p ^ ) -\log (1-\hat{p}) log(1p^) 。特点是: p ^ \hat{p} p^越趋于1,损失(loss)越大;越趋于0,损失(loss)越小。

分析如下: J = − log ⁡ ( 1 − p ^ ) J=-\log (1-\hat{p}) J=log(1p^) 是一个单调递减函数,且概率p的值域只能是[0,1]之间,因此只有函数的上半部分。我们看到当概率p取1(即预估的分类结果y=1)时,loss值是趋近于正无穷的,表明我们分错了(实际分类结果是0)。
由于模型是个二分类问题,分类结果y非0即1,因此我们可以使用一个巧妙的方法,通过控制系数的方式,将上面的两个式子合并成一个:
J ( p ^ , y ) = − log ⁡ ( p ^ ) y − log ⁡ ( 1 − p ^ ) 1 − y J(\hat{p}, y)=-\log (\hat{p})^{y}-\log (1-\hat{p})^{1-y} J(p^,y)=log(p^)ylog(1p^)1y

以上是对于单个样本的误差值,那么求整个集合内的损失可以取平均值:
J ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( p ^ ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − p ^ ( i ) ) J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(\hat{p}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{p}^{(i)}\right) J(θ)=m1i=1my(i)log(p^(i))+(1y(i))log(1p^(i))

然后,我们将 p ^ \hat{p} p^ 替换成sigmoid函数,得到逻辑回归的损失函数如下:
J ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( σ ( θ T ⋅ X b ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − σ ( θ T ⋅ X b ( i ) ) ) J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(\sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right)\right) J(θ)=m1i=1my(i)log(σ(θTXb(i)))+(1y(i))log(1σ(θTXb(i)))

2.2 另一种推导方式

我们已经知道了逻辑损失函数的推导过程,但是就像在数学课上老师在黑板中写下的解题过程一样,我们费解的是“这个思路究竟是怎么来的”?

逻辑回归的损失函数当然不是凭空出现的,而是根据逻辑回归本身式子中系数的最大似然估计推导而来的。

最大似然估计就是通过已知结果去反推最大概率导致该结果的参数。极大似然估计是概率论在统计学中的应用,它提供了一种给定观察数据来评估模型参数的方法,即 “模型已定,参数未知”,通过若干次试验,观察其结果,利用实验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

逻辑回归是一种监督式学习,是有训练标签的,就是有已知结果的,从这个已知结果入手,去推导能获得最大概率的结果参数,只要我们得出了这个参数,那我们的模型就自然可以很准确的预测未知的数据了。

令逻辑回归的模型为$ h_{0}(x ; \theta) $,则可以将其视为类1的后验概率,所以有:
p ( y = 1 ∣ x ; θ ) = ψ ( t ) = 1 1 + e − θ T ⋅ X b p ( y = 0 ∣ x ; θ ) = 1 − ψ ( t ) = e − θ T ⋅ X b 1 + e − θ T ⋅ X b p(y=1 | x ; \theta)=\psi(t)=\frac{1}{1+e^{-\theta^{T} \cdot X_{b}}} p(y=0 | x ; \theta)=1-\psi(t)=\frac{e^{-\theta^{T} \cdot X_{b}}}{1+e^{-\theta^{T} \cdot X_{b}}} p(y=1x;θ)=ψ(t)=1+eθTXb1p(y=0x;θ)=1ψ(t)=1+eθTXbeθTXb

以上两个式子,可以改写为一般形式:
p ( y ∣ x ; θ ) = h 0 ( x ; θ ) y ( 1 − h 0 ( x ; θ ) ) 1 − y p(y | x ; \theta)=h_{0}(x ; \theta)^{y}\left(1-h_{0}(x ; \theta)\right)^{1-y} p(yx;θ)=h0(x;θ)y(1h0(x;θ))1y

因此根据最大似然估计,可以得到:
J ( θ ) = ∏ i = 1 m p ( y i ∣ x i ; θ ) = ∏ i = 1 m h 0 ( x i ; θ ) y i ( 1 − h 0 ( x i ; θ ) ) ( 1 − y ) i J(\theta)=\prod_{i=1}^{m} p\left(y^{i} | x^{i} ; \theta\right)=\prod_{i=1}^{m} h_{0}\left(x^{i} ; \theta\right)^{y^{i}}\left(1-h_{0}\left(x^{i} ; \theta\right)\right)^{(1-y)^{i}} J(θ)=i=1mp(yixi;θ)=i=1mh0(xi;θ)yi(1h0(xi;θ))(1y)i

为了简化计算,取对数将得到:
log ⁡ ( J ( θ ) ) = ∑ i = 1 m y ( i ) log ⁡ ( p ^ ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − p ^ ( i ) ) \log (J(\theta))=\sum_{i=1}^{m} y^{(i)} \log \left(\hat{p}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{p}^{(i)}\right) log(J(θ))=i=1my(i)log(p^(i))+(1y(i))log(1p^(i))

我们希望极大似然越大越好,就是说,对于给定样本数量m,希望$ -\frac{1}{m} \log (J(\theta)) $越小越好,得到逻辑回归的损失函数如下:
$ J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(\sigma\left(\theta^{T} \cdot X_{b}{(i)}\right)\right)+\left(1-y{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right)\right) $

所以说逻辑回归的损失函数不是定义出来的,而是根据最大似然估计推导出来的。

下面的目标就是:找到一组参数 θ \theta θ,使得损失函数 J ( θ ) J(\theta) J(θ)达到最小值。

这个损失函数是没有标准方程解的,因此在实际的优化中,我们往往直接使用梯度下降法来不断逼近最优解。

3. 损失函数的梯度

对于损失函数:
L ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( σ ( θ T ⋅ X b ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − σ ( θ T ⋅ X b ( i ) ) ) L(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(\sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right)\right) L(θ)=m1i=1my(i)log(σ(θTXb(i)))+(1y(i))log(1σ(θTXb(i)))

使用梯度下降法,就要求出梯度,对每一个向量 θ \theta θ中每一个参数,都求出对应的导数:
∇ f = ( ∂ L ( θ ) ∂ θ 0 , ∂ L ( θ ) ∂ θ 1 , ∂ L ( θ ) ∂ θ 2 , … , ∂ L ( θ ) ∂ θ n ) T \nabla f=\left(\frac{\partial L(\theta)}{\partial \theta_{0}}, \frac{\partial L(\theta)}{\partial \theta_{1}}, \frac{\partial L(\theta)}{\partial \theta_{2}}, \dots, \frac{\partial L(\theta)}{\partial \theta_{n}}\right)^{T} f=(θ0L(θ),θ1L(θ),θ2L(θ),,θnL(θ))T
对sigmoid函数进行求导(链式求导法则):
σ ( t ) = 1 1 + e − t = ( 1 + e − t ) − 1 σ ( t ) ′ = − ( 1 + e − t ) − 2 ⋅ e − t ⋅ ( − 1 ) = ( 1 + e − t ) − 2 ⋅ e − t \sigma(t)=\frac{1}{1+e^{-t}}=\left(1+e^{-t}\right)^{-1} \sigma(t)^{\prime}=-\left(1+e^{-t}\right)^{-2} \cdot e^{-t} \cdot(-1)=\left(1+e^{-t}\right)^{-2} \cdot e^{-t} σ(t)=1+et1=(1+et)1σ(t)=(1+et)2et(1)=(1+et)2et

然后对外层的log函数进行求导:
( log ⁡ σ ( t ) ) ′ = 1 σ ( t ) ⋅ σ ( t ) ′ = 1 σ ( t ) ⋅ ( 1 + e − t ) − 2 ⋅ e − t = 1 ( 1 + e − t ) − 1 ⋅ ( 1 + e − t ) − 2 ⋅ e − t = ( 1 + e − t ) − 1 ⋅ e − t \begin{aligned}(\log \sigma(t))^{\prime} &=\frac{1}{\sigma(t)} \cdot \sigma(t)^{\prime} \\ &=\frac{1}{\sigma(t)} \cdot\left(1+e^{-t}\right)^{-2} \cdot e^{-t} \\ &=\frac{1}{\left(1+e^{-t}\right)^{-1}} \cdot\left(1+e^{-t}\right)^{-2} \cdot e^{-t} \\ &=\left(1+e^{-t}\right)^{-1} \cdot e^{-t} \end{aligned} (logσ(t))=σ(t)1σ(t)=σ(t)1(1+et)2et=(1+et)11(1+et)2et=(1+et)1et

然后进行整理:
( log ⁡ σ ( t ) ) ′ = ( 1 + e − t ) − 1 ⋅ e − t = e − t 1 + e − t = 1 + e − t − 1 1 + e − t = 1 − 1 1 + e − t = 1 − σ ( t ) \begin{aligned}(\log \sigma(t))^{\prime} &=\left(1+e^{-t}\right)^{-1} \cdot e^{-t}=\frac{e^{-t}}{1+e^{-t}} \\ &=\frac{1+e^{-t}-1}{1+e^{-t}}=1-\frac{1}{1+e^{-t}} \\ &=1-\sigma(t) \end{aligned} (logσ(t))=(1+et)1et=1+etet=1+et1+et1=11+et1=1σ(t)

下面就可以对损失函数前半部分的表达式: $ y^{(i)} \log \left(\sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right)\right) 对 对 \theta$进行求导了。带入上面的结果,得到:
y ( i ) ( 1 − σ ( θ T ⋅ X b ( i ) ) ) ⋅ X j ( i ) y^{(i)}\left(1-\sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right)\right) \cdot X_{j}^{(i)} y(i)(1σ(θTXb(i)))Xj(i)

同样地,可以对损失函数的后半部分做求导,跟上面类似。

最终求的损失函数 L ( θ ) L(\theta) L(θ) θ \theta θ的导数如下,即逻辑回归的损失函数经过梯度下降法对一个参数进行求导,得到结果如下:
L ( θ ) θ j = 1 m ∑ i = 1 m ( σ ( θ T ⋅ X b ( i ) ) − y ( i ) ) X j ( i ) \frac{L(\theta)}{\theta_{j}}=\frac{1}{m} \sum_{i=1}^{m}\left(\sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right)-y^{(i)}\right) X_{j}^{(i)} θjL(θ)=m1i=1m(σ(θTXb(i))y(i))Xj(i)

其中$ \sigma\left(\theta^{T} \cdot X_{b}^{(i)}\right) $就是逻辑回归模型的预测值。

在求得对一个参数的导数之后,则可以对所有特征维度上对损失函数进行求导,得到向量化后的结果如下:
∇ J ( θ ) = 1 m ⋅ ( ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) ⋅ X i ( i ) ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) ⋅ X 2 ( i ) ⋯ ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) ⋅ X n ( i ) ) = 1 m ⋅ X b T ⋅ ( σ ( X b θ ) − y ) \nabla J(\theta)=\frac{1}{m} \cdot\left(\begin{array}{c}\sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \\ \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \cdot X_{i}^{(i)} \\ \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \cdot X_{2}^{(i)} \\ \cdots \\ \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \cdot X_{n}^{(i)} \end{array}\right) =\frac{1}{m} \cdot X_{b}^{T} \cdot(\sigma(X_{b} \theta)-y) J(θ)=m1i=1m(y^(i)y(i))i=1m(y^(i)y(i))Xi(i)i=1m(y^(i)y(i))X2(i)i=1m(y^(i)y(i))Xn(i)=m1XbT(σ(Xbθ)y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值