- 博客(19)
- 收藏
- 关注
原创 【探讨】bp神经网络是前馈还是后馈
BP神经网络的前馈与后馈的区别如下:1.阶段不同:BP神经网络的前馈发生在网络输出的计算阶段,而BP神经网络的后馈过程发生在训练的阶段。2.计算对象不同:BP神经网络的前馈计算的是BP神经网络神经元的值,而BP神经网络的后馈计算的是BP神经网络参数的梯度。3.影响不同:BP神经网络的前馈影响的是网络的准确性,BP神经网络的后馈影响的是网络的训练。
2023-12-12 20:11:37 1271
原创 【实用】sklearn决策树怎么导出规则
本文讲述在sklearn训练了决策树模型之后,如何提取决策树规则,包括决策树文本规则,决策树可视化规则和决策树规则数据等等,并进一步简述如何将决策树规则布署到线上,
2023-12-11 16:29:05 1968 1
原创 【算法】怎么用算法给外卖小哥规划路线
假设现在外卖小哥接了10个单,那么要怎么规划路线呢?当然,经验丰富的老哥一看就知道了,但是新人菜鸟小哥就未必能找到节省时间的路线。那么,如果使用算法来解决这个问题会怎么样?如何在尽量少的总路程和时间内,选择一条优秀路线呢?不妨使用搜索算法来解决这个问题,例如遗传算法就可以解决这类型的问题。主要包括两步1.A、B两点之间的代价函数这里的代价不仅是时间,也要考虑路程,难易程度等。当然,只考虑时间也是可以的,主要看小哥自己认为代价是什么。2.寻找最优路径使用优化算法,寻找一条总代价最小的路径就可以了。
2023-12-10 23:46:19 1697 1
原创 【分享】我想上手机器学习
对于新人来说,开始学习机器学习可能会感到有些困难。例如一般会给出海一样阔的学习清单,然后还需要掌握基础数学知识、学习Python编程语言、学习机器学习基础理论、实践项目、参与社区和持续学习等方面的努力等等等等等等等等等等等一大堆的“刚性要求”及“说与不说都一样的建议”。与其说这些是学习建议或者学习指引,还不如说是“机器学习劝退书”。如果不抓住主干,而是繁枝杂叶,那么养猪都要买上十本书,看完隔壁家猪都下崽了。下面结合实际的经验,和一些真正上手人的经历,今天我来分享一下机器学习上手要怎么搞。
2023-12-08 20:00:21 1774
原创 【教程】逻辑回归怎么做多分类
逻辑回归模型是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。它与多重线性回归有很多相同之处,模型形式基本相同,都具有w'x+b,其中w和b是待求参数。重线性回归直接将w'x+b作为因变量即y =w'x+b,而逻辑回归则通过sigmiod函数将w'x+b对应一个概率P,也就是说,线性回归用于数值预测问题,而逻辑回归则用于分类问题,逻辑回归输出的是属于类别的概率。
2023-12-07 18:56:27 3651 1
原创 【总结】机器学习中的15种分类算法
分类算法也称为模式识别,是一种机器学习算法。常见的分类算法包括决策树、朴素贝叶斯、逻辑回归、K-最近邻、支持向量机等。本文介绍15种机器学习中的分类算法,并介绍相关的优缺点,在使用时可以根据优缺点选择合适的算法。
2023-12-05 20:36:29 13413
原创 一篇上手机器学习
Python是一种易于学习的高级编程语言,广泛应用于机器学习领域。你可以通过学习Python的语法和各种表达式,以及它的特点,如鸡肋线程、强制缩进和不需编译的解释性等,来掌握Python编程。在开始深入学习机器学习算法之前,你需要了解一些基础知识,比如机器学习的定义、原理和应用场景等。可以通过一些在线课程或书籍来学习这些基础知识。当你对机器学习有了基本的了解后,就可以开始学习各种机器学习算法了。
2023-12-04 23:04:37 1113
原创 【公式】逻辑回归的损失函数是什么
对于逻辑回归模型,损失函数是用来衡量模型预测概率与实际标签之间的差距的。在二分类问题中,逻辑回归模型的预测结果通常被解释为概率值,表示样本属于正类的概率。当这个概率值越接近于1时,表示模型预测样本为正类的可能性越大;反之,当概率值越接近于0时,表示模型预测样本为负类的可能性越大。
2023-12-03 19:30:28 3082 1
原创 【介绍】有哪些线性模型
线性回归模型是一种数学模型,用于描述一个或多个自变量(预测因子)和一个因变量(响应变量)之间的线性关系。它通常表示为 y = ax + b,其中 a 是斜率,b 是截距。线性回归模型的损失函数为:线性回归模型有一些重要的假设,包括:1.因变量和自变量之间存在线性关系。2.误差项是独立且服从正态分布的随机变量。3.误差项的方差必须相等。线性回归模型可以用来进行预测和分析,例如通过找出自变量和因变量之间的最佳拟合线,可以预测给定自变量值时的因变量值。
2023-12-02 21:29:05 2256
原创 【介绍】有哪些决策树
决策树(Decision Tree)是一种常见的机器学习方法,它基于树形结构来进行决策。决策树在分类问题中特别有效,也可以用于回归问题。它通过将数据集划分成若干个子集,从而实现对整个数据集的预测。决策树的每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。决策树是一种直观运用概率分析的一种图解法,其目的是为了产生一棵泛化能力强,即处理未见示例能力强的决策树。
2023-12-01 20:57:07 1554 1
原创 【解答】决策树是分类还是回归
本文部分图文借鉴自。如果直接问决策树是分类还是回归,那么决策树既可以做分类,也可以做回归,但这样的问答是不准确的,因为决策树有很多种,决策树从技术主线上来分,有两类:CART决策树、ID3系列决策树,其中ID3系列都是用于做分类的,只有CART之下的有关于做回归的回归树,也称为CART回归树,所以,准确来说,决策树有做分类的,也有做回归的,做分类的叫分类树,做回归的叫回归树
2023-11-29 21:18:45 1877 1
原创 【实例】逻辑回归模型判断乳腺癌类别
逻辑回归是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。它通过一个非线性的sigmoid函数,将线性回归模型得到的结果映射到[0,1]之间取值范围的值,并设置阈值为0.5,通过与阈值的比较达到二分类的效果。乳腺癌数据如下:数据共150个样本,包含四个特征和乳腺癌类别平均平滑度、平均紧凑度、平均凹面、平均凹点,类别:0-恶性、1-良性下面我们训练一个逻辑回归,用于预测乳腺癌是良性还是恶性。
2023-11-25 21:00:01 1570
原创 【例子】BP神经网络预测城市犯罪指标
BP神经网络,全称反向传播(Back Propagation)神经网络,是1986年由Rumelhart和McClelland为首的科学家提出的概念。它是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络模型之一。BP神经网络的基本思想是梯度下降法,利用梯度搜索技术,使网络的实际输出值和期望输出值的误差均方差为最小。其核心算法包括信号的前向传播和误差的反向传播两个过程。
2023-11-25 06:17:49 1697
原创 BP神经网络需要注意什么
总之,在使用BP神经网络时需要注意很多因素,包括初始化、激活函数选择、训练方式、避免局部极小值、梯度检查、数据集质量、过拟合问题、参数选择、优化算法选择、验证和测试、数据预处理、模型可解释性、实时性和效率以及模型的更新和维护等。需要根据具体情况进行综合考虑和调整,以确保模型的性能和泛化能力。
2023-11-17 20:41:44 366 1
原创 怎么上手BP神经网络
比较推荐的是梯度下降法和Levenberg-Marquardt法,梯度下降法在学习时使用,用于了解BP神经网络训练的原理,Levenberg-Marquardt法建议在实际中使用,它的效果比梯度下降法好很多,梯度下降法在它面前就是个玩具。在看老饼的文章的时候,满满一页的推导,直接放弃了,但大概思想是了解的,就是利用了高斯牛顿法和梯度下降法进行双结合,所以利用了二阶信息又利用了一阶信息,就比梯度下降法单纯用一阶信息要有效得多。这个是运行结果,蓝色代表原始的数据,红色代表用BP神经网络拟合的结果。
2023-11-14 13:20:28 179
原创 matlab的安装
7.许可文件选择license_standalone.lic(在crack文件夹)2.打开解压后的文件夹,选中MATLAB R2020a.iso,双击打开。
2023-10-17 10:52:54 98
原创 学习笔记:matlab中各种神经网络与代码DEMO
好记性不如烂笔头,这段时间学习了神经网络后,难免有些混乱,这里特地整理和梳理一下matlab中的各种神经网络和简要的DEMO。
2023-10-17 10:22:13 1817
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人