我刚突然明白路径压缩是干啥的了
并查集 的 findset(int a)不是一路追随直到根节点么
路径压缩就是适用于 只要找根节点 不用关心路径的情况下 直接记录 fa[a]=根节点就行了
再说这个题目 n个节点 初始时是n颗数 给两种操作 一种是 I u v 表示u的父节点是v u 和 v的距离是差的绝对值 00;
一种是 E u表示询问 u到根节点距离是多少
给出 n 接下来 n 行 每行一个操作 如果是E 就输出询问结果
这样就比较明了了 记录一个数组 fa 和一个距离数组 dis
dis[u] 一开始 存着 u到 父节点的距离 但是 每次询问的时候 就压缩为 u到根节点的距离
好了 现在开始敲。。。。。
JJ 好 pain。。。
RE了一次 wa了两次。。。
RE是因为忘记 00 了
wa了一次后 发现 把输入n 写在初始化后面了
又wa了一次 不晓得怎么回事儿 随便一改就过了。。。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=20000+10;
int fa[maxn],dis[maxn];
int findset(int a)
{
if(fa[a]!=a)
{
int root=findset(fa[a]);
dis[a]+=dis[fa[a]];
return fa[a]=root;
}
else return a;
}
int main()
{
int T,n,u,v;
char cmd[3];
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(dis,0,sizeof(dis));
for(int i=1;i<=n;++i)
fa[i]=i;
while(scanf("%s",cmd) && cmd[0]!='O')
{
if(cmd[0]=='I')
{
scanf("%d %d",&u, &v);
fa[u]=v;
dis[u]=u-v>0?(u-v)%1000: (v-u)%1000;
}
else if(cmd[0]=='E')
{
scanf("%d",&u);
findset(u);
printf("%d\n",dis[u]);
}
}
}
return 0;
}