1116 Play on Words

随便看hdu 看到的 就做了一下 前两天刚做过类似的 就是并查集看图是不是连通  然后判断是否可以构成欧拉通路

并查集没啥讲的了。 还有用一个exist数组 记录 图中是否有这个点


这次的欧拉通路是有向图 不用开两个数组 直接用degree记录 出度减去入度的值 所以每次输入一个单词 其实就是输入一条从首字符指向最后一个字符的边 首字符的degree++

最后一个字符的 degree--  最后首先统计并查集  fa==-1 并且exist==1 的个数 超过1 了就不连通

然后看degree 全0可以 直接是欧拉回路

如果有两个不是0 记录下来 只要一个是1 另一个是-1 就可以了


1A的

别的没啥了。。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=27;
int fa[maxn];
bool exist[maxn];
int degree[maxn];
int findset(int a)
{
    while(fa[a]!=-1)
    a=fa[a];
    return a;
}

void Union(int a,int b)
{
    int x1=findset(a);
    int x2=findset(b);
    if(x1!=x2)
    fa[x2]=x1;
}

int main()
{
    int T;scanf("%d",&T);
    int n,i,j,f,t;
    char str[1005];
    while(T--)
    {
        memset(exist,0,sizeof(exist));
        memset(degree,0,sizeof(degree));
        memset(fa,-1,sizeof(fa));
        scanf("%d",&n);
        for(i=0;i<n;++i)
        {
            scanf("%s",str);
            f=str[0]-'a';
            t=str[strlen(str)-1]-'a';
            exist[f]=exist[t]=1;
            degree[f]++;
            degree[t]--;
            Union(f,t);
        }
        int cnt1=0,cnt2=0;
        bool flag=0;
        int index1=0,index2;
        for(i=0;i<26;++i)
        {
            if(exist[i]==1 && fa[i]==-1)
            cnt1++;
            if(degree[i]!=0)
            {
                cnt2++;
                if(index1==0)
                index1=degree[i];
                else
                index2=degree[i];
            }
        }
        if(cnt1!=1 || cnt2>2 || cnt2==1)
        printf("The door cannot be opened.\n");
        else if(cnt2==0)
        printf("Ordering is possible.\n");
        else
        {
            if((index1==1 && index2==-1) || (index1==-1 && index2==1))
            printf("Ordering is possible.\n");
            else
            printf("The door cannot be opened.\n");
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值