CINTA作业六

  • G G G是群, H H H G G G的子群。任取 g 1 , g 2 ∈ G g_1,g_2\in G g1,g2G,则 g 1 H = g 2 H g_1H=g_2H g1H=g2H当且仅当 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H

    • 充分性

      因为 g 1 H = g 2 H g_1H=g_2H g1H=g2H,所以存在 h 1 , h 2 ∈ H h_1,h_2 \in H h1,h2H,使得 g 1 h 1 = g 2 h 2 g_1h_1=g_2h_2 g1h1=g2h2,所以 g 1 − 1 g 2 = h 1 h 2 − 1 g_1^{-1}g_2=h_1h_2^{-1} g11g2=h1h21,因为 h 1 h 2 − 1 ∈ H h_1h_2^{-1} \in H h1h21H,所以得到 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H

    • 必要性
      因为 g 1 − 1 g 2 ∈ H g_1^{-1}g_2\in H g11g2H,所以 g 1 − 1 g 2 H = H g_1^{-1}g_2H=H g11g2H=H,又因为 g 1 − 1 g 1 H = H g_1^{-1}g_1H=H g11g1H=H,所以 g 1 − 1 g 1 H = g 1 − 1 g 2 H g_1^{-1}g_1H=g_1^{-1}g_2H g11g1H=g11g2H,所以 g 1 g 1 − 1 g 1 H = g 1 g 1 − 1 g 2 H g_1g_1^{-1}g_1H=g_1g_1^{-1}g_2H g1g11g1H=g1g11g2H,则有 g 1 H = g 2 H g_1H=g_2H g1H=g2H

  • 如果 G G G是群, H H H是群 G G G的子群,且 [ G : H ] = 2 [G:H]=2 [G:H]=2 g ∈ G g\in G gG,请证明 g H = H g gH=Hg gH=Hg

    g ∈ H g\in H gH,由吸收率可得 g H = H g = H gH=Hg=H gH=Hg=H

    g ∉ H g\notin H g/H,则 g H ≠ H , H q ≠ H gH\neq H,Hq\neq H gH=H,Hq=H,由同一或不相交性,且 [ G : H ] = 2 [G:H]=2 [G:H]=2, 所以 g H = H g = G − H gH=Hg=G-H gH=Hg=GH

  • 如果群 H H H是群 G G G的真子群,即存在 g ∈ G g\in G gG但是 g ∉ H g\notin H g/H,请证明 ∣ H ∣ ≤ ∣ G ∣ / 2 |H|\leq|G|/2 HG/2

    因为群 H H H是群 G G G的真子群,且 ∣ G ∣ m o d e ∣ H ∣ = 0 |G|mode|H|=0 GmodeH=0,所以存在整数 n > 1 n>1 n>1使得 n ∣ H ∣ = ∣ G ∣ n|H|=|G| nH=G,所以 ∣ H ∣ ≤ ∣ G ∣ / 2 |H|\leq|G|/2 HG/2

  • 使用群论的方法重新证明费尔马小定理和欧拉定理。

    • 费马小定理

      G G G 1 1 1~ p − 1 p-1 p1% p p p下的乘法群, p p p为素数,先证 G G G是一个群。任取 G G G中的两个元素 g 1 , g 2 g_1,g_2 g1,g2,因为 g 1 g 2 g_1g_2 g1g2% p p p < p <p <p,所以满足封闭性,因 1 ∗ g = g ∗ 1 = g 1*g=g*1=g 1g=g1=g,故存在单位元,接下来证明 g g − 1 ≡ 1 ( m o d p ) gg^{-1}≡1(modp) gg11(modp),因为 p p p是质数, g c d ( g , p ) = 1 gcd(g,p)=1 gcd(g,p)=1,故存在逆元 g − 1 g^{-1} g1 a ∈ G a\in G aG o r d ( a ) ∣ p − 1 ord(a)|p-1 ord(a)p1,令 n ∗ o r d ( a ) = p − 1 n*ord(a)=p-1 nord(a)=p1,所以 a o r d ( a ) n = a p − 1 a^{ord(a)n}=a^{p-1} aord(a)n=ap1,所以 a p − 1 ≡ 1 ( m o d p ) a^{p-1}≡ 1(mod p) ap11(modp)

    • 欧拉定理

      G G G 1 1 1~ n − 1 n-1 n1% n n n下从 a 1 到 a ϕ ( n ) a_1到a_{\phi(n)} a1aϕ(n)构成的群,且 a 1 到 a ϕ ( n ) a_1到a_{\phi(n)} a1aϕ(n) n n n互素, n n n是一个素数,现在 G G G证明是一个群。

      显然 ∀ a n , a m ∈ G \forall a_n,a_m\in G an,amG a n a m a_na_m anam% n < n n<n n<n,且与 n n n互素。1是其单位元。 g c d ( a , n ) = 1 gcd(a,n)=1 gcd(a,n)=1,故存在逆元。 ∀ a ∈ G \forall a\in G aG,由拉格朗日定理, o r d ( a ) ∣ ϕ ( n ) ord(a)|\phi(n) ord(a)ϕ(n),令 n ∗ o r d ( a ) = ϕ ( n ) n*ord(a)=\phi(n) nord(a)=ϕ(n),所以 a o r d ( a ) n = a ϕ ( n ) = 1 a^{ord(a)n}=a^{\phi(n)}=1 aord(a)n=aϕ(n)=1,所以 a ϕ ( n ) ≡ 1 ( m o d p ) a^\phi(n)≡1(modp) aϕ(n)1(modp)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值