CINTA作业四

CINTA作业四

1.命题6.6证明
设G为群,且a,b,c ∈G。如果ba = ca,则b = c;并且,如果ab = ac,则b = c

证:

因为G为群,且a,b,c ∈G,所以
∃ a − 1 ∈ G , 使 得 a ⋅ a − 1 = e = a − 1 ⋅ a \exist a^{-1}∈G,使得a ·a^{-1} = e = a^{-1}·a\\ a1G使aa1=e=a1a
又因为ba=ca,所以
b a a − 1 = c a a − 1 即 b = a baa^{-1}=caa^{-1}即b=a baa1=caa1b=a
同理因为ab=ac,所以
a − 1 a b = a − 1 a c , 即 b = c a^{-1}ab=a^{-1}ac,即b=c a1ab=a1ac,b=c
2.命题6.7证明

证:

G是群,∀a,b ∈G,则

(1)
∀ m , n ∈ Z , g m g n = g . g . . . g ( m − 1 次 群 运 算 ) . g . g . . . g ( n − 1 次 群 运 算 ) = g . g . . . g ( m + n − 1 次 群 运 算 ) = g m n \forall m,n\in Z,g^mg^n=g.g...g(m-1次群运算).g.g...g(n-1次群运算)=g.g...g(m+n-1次群运算)=g^{mn} m,nZgmgn=g.g...g(m1).g.g...g(n1)=g.g...g(m+n1)=gmn

(2)
∀ m , n ∈ Z , ( g m ) n = g m . g m . . . g m ( n − 1 次 群 运 算 ) = g m + m + . . . m = g m n \forall m,n\in Z,(g^m)^n=g^m.g^m...g^m(n-1次群运算)=g^{m+m+...m}=g^{mn} m,nZ,(gm)n=gm.gm...gm(n1)=gm+m+...m=gmn

(3)

3.证明对任意偶数阶群G,都存在g∈G,g不等于e且g^2=e

证:

因为群中任一阶大于2 的元素和它的逆元的阶相等,且当一个元素的阶大于2 时,其逆元和它本身不相等,即阶大于2的元素是成对的。所以偶数阶群中,除去成对的阶大于2的元素,剩下的只能是一阶元和二阶元,一阶元只有单位元一个,所以二阶元的个数为奇数个,所以对任意偶数阶群G存在二阶元。

4.命题6.8证明

群G的非空子集H是G的子群,当且仅当H不等于 ∅,且对任意a,b ∈H,ab^-1∈H

证明充分性:
G 的 非 空 子 集 H 是 G 的 子 群 , 因 为 a , b ∈ H , 所 以 b − 1 ∈ H , 由 封 闭 性 可 得 a b − 1 ∈ H G的非空子集H是G的子群,因为a,b ∈H,所以b^{-1}\in H,由封闭性可得ab^{-1}\in H GHG,a,bH,b1H,ab1H
证明必要性:
因 为 H ≠ ϕ , 且 a , b ∈ H , a b − 1 ∈ H . 取 任 意 a ∈ H , e = a a − 1 ∈ H 。 故 单 位 元 存 在 任 取 b ∈ H , 有 b − 1 = e b − 1 ∈ H 。 故 逆 元 存 在 对 任 意 a , b ∈ H , 有 b − 1 ∈ H , a b = a ( b − 1 ) − 1 ∈ H 。 故 满 足 封 闭 性 任 取 a , b , c ∈ H , ( a b ) c = a ( b c ) 。 结 合 律 满 足 因为H\neq \phi,且a,b\in H,ab^{-1}\in H.\\取任意a\in H,e=aa^{-1}\in H 。故单位元存在\\ 任取b\in H,有b^{-1}=eb^{-1}\in H。故逆元存在\\ 对任意a,b\in H,有b^{-1}\in H,ab=a(b^{-1})^{-1}\in H。故满足封闭性\\ 任取a,b,c\in H,(ab)c=a(bc)。结合律满足 H=ϕ,a,bH,ab1H.aH,e=aa1HbH,b1=eb1Ha,bH,b1H,ab=a(b1)1Ha,b,cH,(ab)c=a(bc)
故H满足群公理

5.
设 G 是 群 , 对 任 意 n ∈ N , i ∈ [ 0 , n ] , g i ∈ G 。 证 明 g 0 g 1 . . . g n 的 逆 元 是 g n − 1 . . . g 1 − 1 g 0 − 1 . 设G是群,对任意n∈N,i∈[0,n],g_i∈G。证明g_0g_1...g_n的逆元是g_n^{-1}...g_1^{-1}g_0^{-1}. GnNi[0,n]giGg0g1...gngn1...g11g01.
证:
因 为 G 是 群 , g i ∈ G , 所 以 g i g i − 1 = e 所 以 ( g 0 g 1 . . . g n ) ( g n − 1 . . . g 1 − 1 g 0 − 1 ) = g 0 g 1 . . . ( g n g n − 1 ) . . . g 1 − 1 g 0 − 1 = e 故 g 0 g 1 . . . g n 的 逆 元 是 g n − 1 . . . g 1 − 1 g 0 − 1 因为G是群,g_i∈G,所以g_ig_i^{-1}=e\\ 所以(g_0g_1...g_n)(g_n^{-1}...g_1^{-1}g_0^{-1})=g_0g_1...(g_ng_n^{-1})...g_1^{-1}g_0^{-1}=e\\ 故g_0g_1...g_n的逆元是g_n^{-1}...g_1^{-1}g_0^{-1} GgiGgigi1=e(g0g1...gn)(gn1...g11g01)=g0g1...(gngn1)...g11g01=eg0g1...gngn1...g11g01

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值