leetcode 172:阶乘后的零
给定一个整数 n ,返回 n! 结果中尾随零的数量。
提示 n! = n * (n - 1) * (n - 2) * … * 3 * 2 * 1
示例 1:
输入:n = 3
输出:0
解释:3! = 6 ,不含尾随 0
示例 2:
输入:n = 5
输出:1
解释:5! = 120 ,有一个尾随 0
示例 3:
输入:n = 0
输出:0
提示:
0 <= n <= 104
解题思路:
实际上就是计算1-n之中有多少个5的因数。以130为例:
第一次除以5时得到26,表明存在26个包含 [一] 个因数5的数;
第二次除以5得到5,表明存在5个包含 [二] 个因数5的数(这些数字的一个因数5已经在第一次运算的时候统计了);
第三次除以5得到1,表明存在1个包含 [三] 个因数5的数(这些数字的两个因数5已经在前两次运算的时候统计了);
得到从1-n中所有5的因数的个数
例如:
第一次:5,10,15,…,130,至少包含1个5的数为26个
第二次:25,50,75,100,125,至少包含2个5的数有这5个
第三次:125,它至少包含3个5(其实也只包含3个5)
代码:
class Solution {
public int trailingZeroes(int n) {
int sum = 0;
while(n>0){
sum =sum + n/5;
n= n/5;
}
return sum;
}
}