状态压缩的想法就是用一个数代表一组数,以降低表示状态所代表的维数。
http://poj.org/problem?id=3254
☝一道入门题目
题意:有一片可以放牧的地方n*m(n,m均小于12),然后有的方格上可以种草(1),有的不可以(0),问有多少种可以放牛的方式,一头牛也不放也可以,其中要求牛不能相互打架(即有公共边的格子不能都放上牛),我们就用一个数字来代替一行的状态,比如一行最多有12个格子,那么就是1<<12(1*2的12次方=4096)个状态,其中要保证每一行的不打架(①),那么在放下一行的时候只要保证下一行和它的上一行不打架就可以了(②)。
dp【i】【j】的意思就是第i行状态为j的时候可行的方案,那么dp【i】【j】就要等于上一行每个状态下可行的方案。
①:这个其实就是一个二进数,其中0和1的是间隔开的,那么办法就是把这个数字左移一下,然后再与该数字取&,这样如果结果是0,就表示这个数字的0和1刚好不会重合
void init()
{
tot=0;
int cnt=1<<m;//总的状态数
for(int i=0;i<cnt;i++)
{
if((i&i<<1)==0)
states[tot++]=i;//保存符合要求的状态
}
//cout<<tot<<endl;
//经过测试,如果是12位的话,符合状态的tot数为300左右
}
②这个是要分开考虑的,第一行和剩下的所有行的要求是不同的,因为第一行不需要考虑是否会和前一行打架的因素,在输入这个是否可以放牧的地图的时候就会有一个states函数,把这个每一行当做一个二进制数给存起来,这样在考虑第一行的时候,只需要考虑每个不会打架的状态是否可以和states【0】相容即可
for(int i=0;i<tot;i++)
{
if((row[0]&states[i])==states[i])//每一个需要的1都有1和它对应了
dp[0][i]=1;
}
然后再考虑其他行
for(int i=1;i<n;i++)
{
for(int j=0;j<tot;j++)
{
if((row[i]&states[j])==states[j])//可不可以采取这个状态
{
for(int k=0;k<tot;k++)
{
if((states[j]&states[k])==0)//会不会和上一行打架
dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
}
}
}
}
AC代码
#include<iostream>
using namespace std;
const int mod=100000000;
#include<string.h>
int n,m;
int dp[13][1<<12],row[15],tot,states[1<<12];
//第i行状态为j的总的方案个数
void init()
{
tot=0;
int cnt=1<<m;//总的状态数
for(int i=0;i<cnt;i++)
{
if((i&i<<1)==0)
states[tot++]=i;//保存符合要求的状态
}
//cout<<tot<<endl;
}
int main()
{
int temp,ans;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans=0;
for(int i=0;i<n;i++)
{
row[i]=0;
for(int j=0;j<m;j++)
{
scanf("%d",&temp);
row[i]+=temp<<j;//二进制方式保存每一行的状态
}
}
init();
memset(dp,0,sizeof(dp));
for(int i=0;i<tot;i++)
{
if((row[0]&states[i])==states[i])
dp[0][i]=1;
}
for(int i=1;i<n;i++)
{
for(int j=0;j<tot;j++)
{
if((row[i]&states[j])==states[j])
{
for(int k=0;k<tot;k++)
{
if((states[j]&states[k])==0)
dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
}
}
}
}
for(int i=0;i<tot;i++)
ans=(ans+dp[n-1][i])%mod;
printf("%d\n",ans);
}
return 0;
}
这道题目主要就是用一个数字来存储了一行的状态就是我们的状态压缩,然后每一行都是根据上一行来的,就是我们的dp