poj 3734 Blocks(构造矩阵加快速幂)

题意:N个方块一列,4种颜色去涂,其中红色和绿色需要涂偶数个(包括0),问有多少种不同的涂法。

从左往右涂,对于第i个格子,有ai(红色绿色都是偶数个)的方案数,bi(都奇),ci(红色奇绿色偶),di(绿色奇红色偶)。

从而可以构造出矩阵:

2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2

快速幂即可。

AC代码:

//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<ctime>
#include<string.h>
#include<string>
#include<bitset>
using namespace std;
#define ll __int64
#define eps 1e-8
#define NMAX 101000
#define MOD 10007
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
typedef vector<int> vec;
typedef vector<vec> mat;
template<class T>
inline void scan_d(T &ret)
{
    char c;
    int flag = 0;
    ret=0;
    while(((c=getchar())<'0'||c>'9')&&c!='-');
    if(c == '-')
    {
        flag = 1;
        c = getchar();
    }
    while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
    if(flag) ret = -ret;
}

mat mul(mat &A, mat &B)
{
    mat C(A.size(), vec(B[0].size()));
    for(int i = 0; i < A.size(); i++)
        for(int k = 0; k < B.size(); k++)
            for(int j = 0; j < B[0].size(); j++)
                C[i][j] = (C[i][j]+A[i][k]*B[k][j]) % MOD;
    return C;
}

mat pow(mat A, ll n)
{
    mat B(A.size(),vec(A.size()));
    for(int i = 0; i < A.size(); i++)
        B[i][i] = 1;
    while(n > 0)
    {
        if(n&1) B = mul(B,A);
        A = mul(A,A);
        n >>= 1;
    }
    return B;
}
int a[4][4] = {2,0,1,1,0,2,1,1,1,1,2,0,1,1,0,2};

int main()
{
#ifdef GLQ
    freopen("input.txt","r",stdin);
//    freopen("o4.txt","w",stdout);
#endif // GLQ
    mat t(4,vec(4));
    for(int i = 0; i < 4; i++)
        t[i].assign(a[i],a[i]+4);
    int n,cas;
    scanf("%d",&cas);
    while(cas--)
    {
        scanf("%d",&n);
        mat A(1,vec(4));
        A[0][0] = 1;
        mat ans = pow(t,n);
        ans = mul(A,ans);
        printf("%d\n",ans[0][0]);
    }

    return 0;
}


以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数出A的k次幂矩阵res。 3. 最后将res和E相得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂,matrixAdd函数实现矩阵法,printMatrix函数实现输出矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值