题意就是给你一些事要做,有的事至少要在>=l的时间完成才行。
做法讲起来很简单,按照l-t的大小进行排序,然后普通的01背包。
为何?首先这题01背包是指做了先前的事再做当前这件事来递推最优。想一下,如果2件事的l-t(即最小可以开始做的时间)都在比较前面,那么我这两件事紧接着做,从第i时间开始,那么交换顺序也没有关系,反正都是在i+t1+t2完成,得到的价值也是v1+v2,但是什么情况下会出现最优解一件事必须要后面做?那么只能是在这件事的起始时间必定是在做前一件事之后,那么肯定要先做l-t小的事,即要先递推这些事,所以要排序。
AC代码:
#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll long long
#define ull unsigned long long
#define eps 1e-8
#define NMAX 201000
#define MOD 1000000
//#define lson l,mid,rt<<1
//#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
char c;
int flag = 0;
ret=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c == '-')
{
flag = 1;
c = getchar();
}
while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
if(flag) ret = -ret;
}
struct node
{
int t,v,l;
bool operator<(const node& p) const
{
return (l-t) < (p.l-p.t);
}
};
node no[35];
ll dp[3000000+10];
int main()
{
#ifdef GLQ
freopen("input.txt","r",stdin);
// freopen("o.txt","w",stdout);
#endif
int n,w;
while(~scanf("%d%d",&n,&w))
{
int maxt = 0,ha = 0;
for(int i = 1; i <= n; i++)
{
scanf("%d%d%d",&no[i].t,&no[i].v,&no[i].l);
maxt += no[i].t; ha = max(ha,no[i].l);
}
sort(no+1,no+1+n);
maxt += ha;
for(int i = 0; i <= maxt; i++)
dp[i] = 0;
int ans = maxt+1;
for(int i = 1; i <= n; i++)
for(int j = maxt-no[i].t; j >= no[i].l-no[i].t; j--)
{
dp[j+no[i].t] = max(dp[j+no[i].t],dp[j]+(ll)no[i].v);
if(dp[j+no[i].t] >= (ll)w && j+no[i].t < ans) ans = j+no[i].t;
if(j == 0) break;
}
if(ans == maxt+1) printf("zhx is naive!\n");
else printf("%d\n",ans);
}
return 0;
}