题解:P7381 [COCI2018-2019#6] Sličice

一看就知道是 dp 题,但是我太弱了,只会记忆化搜索。


为了方便搜索,我们在输入数据后初始化一个二维数组 d d d d i , j d_{i,j} di,j 表示在 Ivan 送给 Nikola j j j 张第 i i i 支足球队的照片时,第 i i i 支足球队的得分。

	for(int i=1;i<=n;i++) {
		d[i][0]=B[P[i]];
		for(int j=1;j<=m-P[i];j++) {
			d[i][j]=B[P[i]+j];
		}
		d[i][m-P[i]+1]=-1;
	}

然后准备搜索。

	for(int i=0;i<=k;i++){
		for(int j=0;j<=n;j++){
			F[i][j]=-1; //-1表示还没搜过
		}
	}

递归函数 f ( k , n ) f(k,n) f(k,n) 返回在 Ivan 送 k k k 张照片给 Nikola,只考虑前 n n n 个球队时能够得到的分数的最大值,那么(详细看注释):

int f(int k, int n) {
	if(n==0)
		return 0;
	if(F[k][n]!=-1)
		return F[k][n];
	int rs = 0;
	for(int i=0;d[n][i]!=-1 && i<=k;i++) {
		rs = max(rs, f(k-i, n-1)+d[n][i]);
	}
	F[k][n] = rs;//记忆化
	return rs;
}

很明显, f ( K , N ) f(K, N) f(K,N) 就是最终的答案。
时间复杂度: O ( N K 2 ) O(NK^2) O(NK2)


完整代码:

#include<bits/stdc++.h>
using namespace std; 
int P[600],B[600];
int n,m;
int d[600][600];
int F[600][600];
int f(int k,int n) 
	if(n==0)
		return 0;
	if(F[k][n]!=-1)
		return F[k][n];
	int rs=0;
	for(int i=0;d[n][i]!=-1&&i<=k;i++) 
		rs=max(rs,f(k-i,n-1)+d[n][i]);
	}
	F[k][n]=rs;
	return rs;
}
int main() {
	int k;
	scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=n;i++){
		scanf("%d",&P[i]);
	} 
	for(int i=0;i<=m;i++){
		scanf("%d",&B[i]);
	}
	for(int i=1;i<=n;i++){
		d[i][0]=B[P[i]];
		for(int j=1;j<=m-P[i];j++){
			d[i][j]=B[P[i]+j];
		}
		d[i][m-P[i]+1]=-1;
	}
	for(int i=0;i<=k;i++){
		for(int j=0;j<=n;j++){
			F[i][j]=-1;
		}
	}
	printf("%d",f(k, n));
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值