快速傅里叶变换FFT/快速数论变换NTT

前言

其实这是3个月前的内容。。。
因为各种原因拖到了现在就是懒而已

FFT

FFT全称快速傅里叶变换(fast Fourier transform),用来解决多项式乘法之类的问题
当然主要还是用来搞卷积
搞♂积
设有两个多项式A(x)和B(x),要求C(x)=A(x)B(x)
暴力算时间复杂度是 O ( n 2 ) O(n^2) O(n2),用FFT可以优化到 O ( n log ⁡ n ) O(n\log n) O(nlogn)

点值与插值

点值

顾名思义,点值就是一个函数上某个点的值
点值对(x,y)就表示在函数上x对应的值y

一个函数的最高项为n,则需要n+1个x不同的点值对就可以把原函数还原出来
那么{(x0,y0),(x2,y2)…(xn,yn)}就是函数的点值表达,把函数转换成点值表达的运算就是点值运算

插值

插值就是点值的逆运算,相当于给出若干个点,要求一条穿过所有点的函数
可以解方程,但一般是用拉格朗日插值法
原来我之前一直用的都是O(2^n)的插值法
拉格朗日♂插值法
暴力的做法就是先把A和B做点值运算,然后把AB的函数值相乘,之后插值运算还原出C
为了保证C的唯一性,A和B都要代入至少C的项数个值


点值和插值的复杂度都是 O ( n 2 ) O(n^2) O(n2),过程上并不能优化,但可以选择带入特定的值x

复数

形如 a + b i a+bi a+bi的数就是复数,其中i是复数单位, i = − 1 i=\sqrt{-1} i=1
a为复数的实部,b为复数的虚部

复平面

复数一般用平面直角坐标系来表示
这里写图片描述
x轴表示实部,y轴表示虚部
那么一个复数可以用向量来表示,设复数Z的幅角为Z到x正半轴的夹角,Z的模长|z|表示从原点到Z的距离
这里写图片描述
那么Z可以用三角函数来表示
这里写图片描述
之后考虑两个复数相乘,就是这样
这里写图片描述
总之,就是模长相乘,幅角相加

n次单位复数根

就是方程 ω n = 1 \omega^n=1 ωn=1的解,可以得出一共有n个解
因为结果等于1,所以模长一定为1
所以等于从一个点开始转n次,每次转相同的角度,最后转回初始位置

根据感性理解,n个解一定是从(1,0)开始,把复平面平均分成n份且模长为1的点
这里写图片描述
这是n=8的情况,其它情况类似

性质

n次单位复数根有一些有用的性质

首先如上图可得,n次单位复数根是n个一循环
也就是 ω i = ω j \omega^i=\omega^j ωi=ωj i ≡ j   ( m o d   n ) i≡j\,(mod \,n) ij(modn)

然后还有一个群的性质:
ω i ≠ ω j \omega^i≠\omega^j ωi̸=ωj i   m o d   n ≠ j   m o d   n i \,mod\,n≠j\,mod\,n imodn̸=jmodn

消去引理:
ω d n d i = ω n i \omega_{dn}^{di}=\omega_{n}^{i} ωdndi=ωni (2|n)

折半引理:
( ω n i ) 2 = ( ω n i + n 2 ) 2 = ω n 2 i (\omega_n^i)^2=(\omega_n^{i+\frac{n}{2}})^2=\omega_n^{2i} (ωni)2=(ωni+2n)2=ωn2i
因为
( ω n i ) 2 = ω n 2 i (\omega_n^i)^2=\omega_n^{2i} (ωni)2=ωn2i
( ω n i + n 2 ) 2 = ω n 2 i + n (\omega_n^{i+\frac{n}{2}})^2=\omega_n^{2i+n} (ωni+2n)2=ωn2i+n
因为n次单位复数根的性质, ω n 2 i = ω n 2 i + n \omega_n^{2i}=\omega_n^{2i+n} ωn2i=ωn2i+n
得证

求和引理:
对于任意正整数n和非负整数k,且n不是k的倍数
则有
∑ j = 0 n − 1 ( ω n k ) j = 0 \sum_{j=0}^{n-1}{(\omega_n^k)^j}=0 j=0n1(ωnk)j=0
证明可以用等比数列求和
∑ j = 0 n − 1 ( ω n k ) j = 1 − ( ω n k ) n 1 − ω n k = 1 − ( ω n n ) k 1 − ω n k = 1 − 1 k 1 − ω n k = 0 \sum_{j=0}^{n-1}{(\omega_n^k)^j}=\frac{1-(\omega_n^k)^n}{1-\omega_n^k}=\frac{1-(\omega_n^n)^k}{1-\omega_n^k}=\frac{1-1^k}{1-\omega_n^k}=0 j=0n1(ωnk)j=1ωnk1(ωnk)n=1ωnk1(ωnn)k=1ωnk11k=0

DFT

DFT全称离散傅里叶变换(Discrete Fourier transform)
定义多项式A(x)的离散傅里叶变换DFT(A),n为A的项数
D F T ( A ) k = A ( ω n k ) DFT(A)_k=A(\omega_n^k) DFT(A)k=A(ωnk),就是依次代入 ω n 0   k − 1 \omega_n^{0\text{~}k-1} ωn0 k1,求A的点值表达

分治策略

暴力求DFT还是 O ( n 2 ) O(n^2) O(n2),所以要用到n次单位复数根的性质

(为了方便处理,首先把AB都扩大到2的幂大小)
设当前分治到多项式A(x), A ( x ) = a 0 + a 1 x + . . . + a n − 1 x n − 1 A(x)=a_0+a_1x+...+a_{n-1}x^{n-1} A(x)=a0+a1x+...+an1xn1
定义两个多项式A0(x),A1(x),其中
A 0 ( x ) = a 0 + a 2 x + . . . + a n − 2 x n 2 − 1 A0(x)=a_0+a_2x+...+a_{n-2}x^{\frac{n}{2}-1} A0(x)=a0+a2x+...+an2x2n1
A 1 ( x ) = a 1 + a 3 x + . . . + a n − 1 x n 2 − 1 A1(x)=a_1+a_3x+...+a_{n-1}x^{\frac{n}{2}-1} A1(x)=a1+a3x+...+an1x2n1
然后A(x)就可以表示成
A ( x ) = A 0 ( x 2 ) + x A 1 ( x 2 ) A(x)=A0(x^2)+xA1(x^2) A(x)=A0(x2)+xA1(x2)
(注意这里指的是每一个不同的x)
所以就变成分治求A0(x)和A1(x)了

因为折半引理,当x取了平方之后, ( ω n i ) 2 = ( ω n i + n 2 ) 2 (\omega_n^i)^2=(\omega_n^{i+\frac{n}{2}})^2 (ωni)2=(ωni+2n)2,所以实际上代入的x就会减少一半
然后就只用代入一半的x就行了

这样每次分成另两个子问题,但每个子问题的规模会减小一半,所以每向下一层,求解的总数一定为n,一共向下 log ⁡ n \log n logn
所以时间复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn)

IDFT

IDFT(inverse discrete Fourier transform)是DFT的逆运算
DFT操作转换成矩阵就是这样:
这里写图片描述
其中y=DFT(A)
可以看出, y = V ∗ a y=V*a y=Va,其中V是中间的矩阵
那么 a = y ∗ V − 1 a=y*V^{-1} a=yV1,就是乘上V的逆矩阵

V − 1 i , j = ω n − j i / n {V^{-1}}_{i,j}=\omega_n^{-ji}/n V1i,j=ωnji/n
证明:
要证明该逆矩阵成立,只需要证出 V ∗ V − 1 = I V*V^{-1}=I VV1=I I I I单位矩阵
V ∗ V − 1 V*V^{-1} VV1的第(i,j)项为
∑ k = 0 n − 1 ω n i k ω n − j k / n \quad\sum_{k=0}^{n-1}{\omega_n^{ik}\omega_n^{-jk}/n} k=0n1ωnikωnjk/n
= 1 n ∑ k = 0 n − 1 ω n i k ω n − j k =\frac{1}{n}\sum_{k=0}^{n-1}{\omega_n^{ik}\omega_n^{-jk}} =n1k=0n1ωnikωnjk
= 1 n ∑ k = 0 n − 1 ω n ( i − j ) k =\frac{1}{n}\sum_{k=0}^{n-1}{\omega_n^{(i-j)k}} =n1k=0n1ωn(ij)k
如果i=j,那么结果为1;否则根据求和引理,结果为0
证毕。

所以只需要把 ω n i j \omega_n^{ij} ωnij变成 ω n − i j \omega_n^{-ij} ωnij,最后的答案再/n就行了

非递归FFT

其实我前面都是在扯淡
FFT用递归实现的话,空间/常数巨大且不好写

所以就要用到非递归FFT
这里写图片描述
数字代表当前位置的x,圆圈代表值
左边就是把0~n-1二进制位反过来
等于是说每次把最后一位为0的放在上,把最后一位为1的放在下,最后二进制就会被翻转

大概看一下这个图也能找出规律吧。。。
每次枚举一个块,之后把这个块从中间分开,做若干次变换
这里写图片描述
就像这样,做完一层后做下一层
然后就没了
感觉FFT挺简单

FFT最后可能有精度误差,所以要判一下
(C++可以用operator来定义复数)

例题

可以看一下这里

code

裸的多项式乘法
输入n和m表示多项式的最高项数,然后输入两个多项式,求两个多项式的乘积

//Started Date: 13/06/2018 18:23
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
using namespace std;

struct C
{
	double a,b;
	C (double _a=0,double _b=0) {a=_a;b=_b;};
}; //复数
C operator+(C x,C y) {return C(x.a+y.a , x.b+y.b);}
C operator-(C x,C y) {return C(x.a-y.a , x.b-y.b);}
C operator*(C x,C y) {return C(x.a*y.a-x.b*y.b , x.a*y.b+x.b*y.a);}
C a[1000001],b[1000001],A[1000001],B[1000001];

int c[1000001];
int i,j,k,l,len,n,m,N;

void init()
{
	scanf("%d%d",&n,&m);
	fo(i,0,n) scanf("%lf",&a[i].a);
	fo(i,0,m) scanf("%lf",&b[i].a);
	
	len=ceil(log(max(n,m)+1)/log(2))+1;
	N=pow(2,len);
	fo(i,0,N-1)
	{
		k=0;
		j=i;
		fo(l,1,len)
		{
			k=(k<<1)+(j&1);
			j>>=1;
		}
		c[i]=k;
	}
}

void fft(C *a,int type)
{
	int i,j,k,l,s,S;
	C a1,a2;
	
	s=N;S=1;
	fo(i,1,len)
	{
		int S2=S;
		s>>=1;S<<=1;
		
		fo(j,0,S2-1)
		{
			C w(cos(2*M_PI*j/S*type) , sin(2*M_PI*j/S*type));
			
			fo(k,0,s-1)
			{
				l=j+k*S;
				a1=a[l];a2=w*a[l+S2];
				
				a[l]=a1+a2;
				a[l+S2]=a1-a2;
			}
		}
	}
}

int main()
{
	init();
	
	fo(i,0,N-1) A[i]=a[c[i]],B[i]=b[c[i]];
	fo(i,0,N-1) a[i]=A[i],b[i]=B[i];
	
	fft(a,1);
	fft(b,1);
	
	fo(i,0,N-1)
	a[i]=a[i]*b[i];
	fo(i,0,N-1) A[i]=a[c[i]];
	fo(i,0,N-1) a[i]=A[i];
	
	fft(a,-1);
	
	j=N-1;
	while (abs(a[j].a)<0.0000001) j--;
	fo(i,0,j) printf("%0.0lf ",a[i].a/N);printf("\n");
}

NTT

用来搞有模数的情况

实际上不一定要用n次单位复数根来定义 ω n \omega_n ωn,只需要满足上面所说的性质
主要是群的性质
ω i ≠ ω j \omega^i≠\omega^j ωi̸=ωj i &ThinSpace; m o d &ThinSpace; n ≠ j &ThinSpace; m o d &ThinSpace; n i \,mod\,n≠j\,mod\,n imodn̸=jmodn

那么在模p的意义下,有一个很好的代替品——原根
设v是p的原根,则满足当0< i< j< p时, v i ≠ v j &ThickSpace; ( m o d &ThickSpace; p ) v^i≠v^j\;(mod \;p) vi̸=vj(modp)
所以可以用 v ( p − 1 ) ∗ i / n v^{(p-1)*i/n} v(p1)i/n来代替 ω n i \omega_n^i ωni(因为一共有p-1个不同的值)

但是要用原根还要满足 ( p − 1 ) / n (p-1)/n (p1)/n为整数,所以要用到特殊的质数
即形如a*2^k+1这样的质数(因为n是2的幂),最常用的就是998244353和1004535809,原根都是3
然后就用原根的幂替换n次单位复数根,其它和FFT一样

code

高精度乘法,输入a和b输出a*b

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
using namespace std;

const int P=998244353;
const int G=3;

long long a[262144],b[262144],A[262144];
long long ans[262144];

char x[262144];
char y[262144];
int c[262144];
int i,j,k,l,len,n,m,N;

long long qpower(long long a,int b)
{
	long long ans=1;
	
	while (b)
	{
		if (b&1) ans=ans*a%P;
		a=a*a%P;
		b>>=1;
	}
	
	return ans;
}

void init()
{
	scanf("%s",x);
	scanf("%s",y);
	n=strlen(x)-1;
	m=strlen(y)-1;
	
	fo(i,0,n) a[i]=x[n-i]-48;
	fo(i,0,m) b[i]=y[m-i]-48;
	
	len=ceil(log(max(n,m)+1)/log(2))+1;
	N=pow(2,len);
	fo(i,0,N-1)
	{
		k=0;
		j=i;
		fo(l,1,len)
		{
			k=(k<<1)+(j&1);
			j>>=1;
		}
		c[i]=k;
	}
}

void ntt(long long a[],int type)
{
	int i,j,k,l,s,S;
	long long a1,a2;
	
	fo(i,0,N-1) A[i]=a[c[i]];
	fo(i,0,N-1) a[i]=A[i];
	
	s=N;S=1;
	fo(i,1,len)
	{
		int S2=S;
		s>>=1;S<<=1;
		
		long long W=qpower(G,((P-1)/S*type+P-1));
		
		fo(j,0,s-1)
		{
			long long w=1;
			
			fo(k,0,S2-1)
			{
				l=j*S+k;
				a1=a[l];a2=w*a[l+S2]%P;
				
				a[l]=(a1+a2)%P;
				a[l+S2]=(a1-a2)%P;
				
				w=w*W%P;
			}
		}
	}
}

int main()
{
	init();
	ntt(a,1);
	ntt(b,1);
	
	fo(i,0,N-1) a[i]=a[i]*b[i];
	
	ntt(a,-1);
	
	j=qpower(N,P-2);
	fo(i,0,N-1) ans[i]=(a[i]*j)%P,ans[i]+=(ans[i]<0)?P:0;
	fo(i,0,N-1)
	if (ans[i]>9)
	{
		ans[i+1]+=ans[i]/10;
		ans[i]%=10;
	}
	
	j=N-1;
	while (j && !ans[j]) j--;
	fd(i,j,0) printf("%lld",ans[i]);printf("\n");
}

后记

其实FFT和NTT把板子背下来就行了
任意模数NTT就用中国剩余定理搞搞高级的做法还不会

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值