codeforces1194F(组合数前缀和)

题目描述

在这里插入图片描述
在这里插入图片描述

题目大意

有n个物品,拿走每个物品需要ti或ti+1的时间(二者等概率发生),只能按顺序拿,求在T时间内期望拿走的物品个数。

前言

由于是第一次爆肝CF,网速+手速导致了E题没写完,F题没想出来
其实前6题还是很清真的

题解

显然分别考虑每个物品的期望贡献,用sum[i]表示t[i]的前缀和
一个物品产生的贡献为1*期望被拿到的概率
而概率= ∑ j = 1 m i n ( T − s u m [ i ] , i ) C i j 2 i \frac{\sum_{j=1}^{min(T-sum[i],i)}{C_{i}^{j}}}{2^i} 2ij=1min(Tsum[i],i)Cij,相当于先各自减去ti,就变成了在i个数中选小于等于min(T-sum[i],i)个数的方案和除以总方案
问题是怎么求组合数的前缀和

前缀和

后来看到网上有用莫队来求组合数前缀和的,但这样做就比较naive了
因为题目中的min(T-sum[i],i)肯定是单调不增的,所以每次只需要快速求出第i行中min(T-sum[i-1],i)的前缀和,然后减掉前面min(T-sum[i-1],i)-min(T-sum[i],i)个数就可以了(就是从i-1的位置减到i的位置)
计算前缀和:
①T-sum[i-1]≥i
那么前缀和=i-1行前缀和*2
②T-sum[i-1]<i
那么前缀和=i-1行前缀和*2-C(i-1,T-sum[i-1])
(把0~T-sum[i-1]分别向左/右加一次,(i-1,T-sum[i-1])位置多向右加了要减去)

code

#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define min(a,b) (a<b?a:b)
#define mod 1000000007
#define Mod 1000000005
#define two 500000004
using namespace std;

long long jc[200001];
long long Jc[200001];
long long w[200001];
int t[200001];
int n,i,j,k,l;
long long T,s,ans;

long long qpower(long long a,int b)
{
	long long ans=1;
	
	while (b)
	{
		if (b&1)
		ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	
	return ans;
}

long long C(int n,int m)
{
	return jc[n]*Jc[m]%mod*Jc[n-m]%mod;
}

int main()
{
//	freopen("f.in","r",stdin);
	
	scanf("%d%I64d",&n,&T);
	fo(i,1,n)
	scanf("%d",&t[i]);
	
	jc[0]=1;jc[1]=1;
	Jc[0]=1;Jc[1]=1;
	w[1]=1;
	fo(i,2,n)
	{
		w[i]=mod-(long long)(mod/i)*w[mod%i]%mod;
		
		jc[i]=jc[i-1]*i%mod;
		Jc[i]=Jc[i-1]*w[i]%mod;
	}
	
	s=1;
	fo(i,1,n)
	{
		s=s*2%mod;
		if (T<=i-1)
		s-=C(i-1,T);
		
		T-=t[i];
		if (T<0)
		break;
		
		if (T<i)
		{
			fd(j,min(T+t[i],i),T+1)
			s=(s-C(i,j))%mod;
			if (s<0)
			s+=mod;
			
			ans=(ans+s*qpower(two,i)%mod)%mod;
		}
		else
		++ans;
	}
	
	printf("%I64d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值