2019牛客暑期多校第一场H(线性基)

https://ac.nowcoder.com/acm/contest/881/H

首先,贴一下大佬的博客(真·大佬)下面的题解也是大佬的,我只是按照我的理解理解了一下............

其次,再了解一下线性基

很多情况下,只要有关异或运算和求最值,就可以用到线性基。线性基有很多很好的性质,比如说如果有很多个数,我们可以构出这些数的线性基,那么这个线性基可以通过互相xor,能够构出原来的数可以相互xor构出的所有的数。所以可以大大减少判断的时间和次数。同时线性基的任何一个非空子集都不会使得其xor和为0。

性质 : 1. 线性基能相互异或得到原集合的所有相互异或得到的值。 (可以推出线性基内的元素组合与线性基外面的某个元素     组合异或和为0)
             2. 线性基是满足性质1的最小的集合
             3.线性基没有异或和为0的子集。

补充:

线性基的应用:

  1. 可以查找一个数是否在S的异或集合中
  2. 查找S的异或集合中的最大值。
  3. 查找S的异或集合中的第k大。

线性基的构造:

线性基至多有log a(max)[64]位。如果bi≠0则bi的最高位为第i位。

每次输入一个数x,我们从高到低扫,如果最高位上有1,那么判断是否有这一位的线性基,如果没有则令bi=x,当前位赋为x,

否则x=x⊕bi,这就相当于x^线性基当前位。

那么我们可以发现,插入x的最终结局是:要么x被选入线性基中;要么x最后变成了0,说明x已经可以通过线性基中的元素异或出来了。

一个数如果可以被原来的线性基表示,则在过程中会变成0,否则会被新添加进去线性基。

---------------------------------------------------------------------------------------------------------------

以下引用了大佬的题解:(加上我的理解奥)

大致题意:给你n个数字,然后让你求所有满足异或和为0的子集的大小之和。

首先这个子集大小之和,显然可以转换为计算每个数字的出现次数之和。考虑到异或和为0的子集,相当于可以用集合中的一部分数字去表示另外一部分数字,所以很容易想到用线性基解决这个问题。

1.对于这n个数字求线性基,假设线性基的个数为r(r<n),那么对于线性基外的n-r个数字,他们的任意组合都可以在线性基内的r个数字找到一个组合,使得异或和为0。(性质1)现在考虑计算线性基外每个数字的贡献,对于任意一个基外的数字,他都可以和任意剩下n-r-1个数字组合,对应有2^{n-r-1}个方案,每个方案都能在基内找到一个组合使得异或和为0。所以这一部分的答案就是:                 (n-r)*2^{n-r-1}

2.接下来我们考虑基内的r个数字的贡献。根据线性基的性质,如果对于同样的n个数字,能够找到两个不同的线性基,那么这两个线性基中的数字个数一定是相等的。根据这个,对于r个数字中的任意一个数字,如果用其余n-1个数字能够表示就可以让该数与其余n-1各数字异或和为0那么说明存在另外一个线性基能够表示所有的n个数字,而且这个线性基数字个数也是r,因此这个点的贡献还是2^{n-r-1};如果用其余n-1个数字不能表示,那么说明只要选了这个数字就不存在一种方案使得最后异或和为0,因此贡献为0.

具体实现的时候,我们没必要每次重新求n-1个数字的线性基。只需要先求n-r个数字的线性基,然后在这个基的基础上尝试添加r-1个数字,这样复杂度就是O(r^2*63+N*63)。具体见代码:

#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<stdlib.h>
#include<vector>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=1000000;
const int mod=1e9+7;
typedef long long ll;
struct LBs{//线性基 
    ll b[64],tot;
    inline void init(){
        tot=0;
        memset(b,0,sizeof(b));
    }
    inline bool ins(ll x){//插入 
        for(int i=62;i>=0;i--)
            if(x&(1ll<<i)){//取出x二进制下的第i位 是1就进 
                if(!b[i]){
				   b[i]=x;
				   tot++;
				   break;
				}
                x^=b[i];
            }
        return x>0;
        //可判断x是否在于线性基当中 
    }
} LB1,LB2,LB3;
ll ppow(ll b){
	ll ans=1;
	ll a=2;
	while(b){
		if(b&1) ans=(ans*a)%mod;
		a=(a*a)%mod;
		b=b/2;
	}
	return ans%mod;
}
int n;
ll a[maxn];
int vis[maxn]; 
vector<ll>LB;
int main(){
	while(~scanf("%d",&n)){
	LB.clear();
	LB1.init();
	LB2.init();
	for(int i=1;i<=n;i++){//找第一个线性基 (r个元素)  
		scanf("%lld",&a[i]);
		vis[i]=0;
		if(LB1.ins(a[i])){
			vis[i]=1;
			LB.push_back(a[i]); 
		}
	}	
	int r=LB1.tot;
	if(n==r){
		cout<<0<<endl;
		continue;
	} 
	ll tmp=ppow(n-r-1);
	ll now;
	now=(ll)((n-r)*tmp)%mod;//考虑计算线性基外每个数字的贡献
	
	//考虑基内的r个数字的贡献
	for(int i=1;i<=n;i++){
		if(vis[i]) continue;
		LB2.ins(a[i]);//先算n-r个元素的线性基 
	}
	for(int i=0;i<r;i++){
		LB3=LB2;
		for(int j=0;j<r;j++){//再逐渐加入r-1(r为第一遍线性基里的r个元素)
			if(i==j) continue; //这就是r-1里的内个1 
			LB3.ins(LB[j]);
		} 
		if(!LB3.ins(LB[i])){//这个线性基(n-r+(r-1))异或上这个数  等于 0 意味着
		                    //使得最后异或和为0 
			now=(now+tmp)%mod;
		}
	}
	cout<<now<<endl; 	
	}
	return 0;
} 


 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值