企业移动应用的8个建议

killer级企业移动应用的8个建议

对象分类:

“企业对消费者”(B2C)应用至关重要,对“企业对员工”(B2E/“企业对企业”(B2B)类应用也至关重要。

 

1. 移动战略目标就是一切

移动战略是基于坚实的业务目标:降低成本,减少浪费,提高服务,做出更好的决策,明显改善沟通、团队合作等。总是从你的目标角度出发。

2. 技术不应该驱动你的目标

一个应用程序使用正确的技术来实现既定的目标。技术尤其是一个“热新”技术不应该决定什么是你想要完成的。选择正确的技术来帮助你实现你的目标。虽然这是一个重要的商业工具,技术本身不应该驱动企业移动策略。

3.5%的遵循规则

既定的移动业务既然选择了就要做好。一个企业移动应用程序可以成功地实现约5%的Web应用程序的功能。不要试图在构建企业移动应用的时候把所有的业务都包括进去。

4. 仔细考虑程序架构

需求定义后再开始编写代码。企业移动应用需要实时在线吗?如何将应用程序与后端系统对接?哪些业务适合目标用户?

5. 一到三个月完成程序构建

一个企业移动应用程序,需要更长的时间来构建太复杂。保持专注。不要求大而全,移动应用也应快速迭代。

6. 最终用户应保持持续参与

最终用户就像客户。允许他们接触和评估早期企业移动应用的原型,来确保开发过程是在正确的轨道上。

7. 衡量目标的标准

创建客观衡量标准:用户数量、收入等。你的成功标准必须基于你的业务目标,并且这个目标必须总是可衡量的

8.不要为了酷而酷 // Cool not E2C app

没有哪个企业移动应用因为只是酷而产生了更高的回报。集中精力在企业移动应用业务本身。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值