【题解】洛谷 P4952 【[USACO 2004 Mar]Financial Aid 赞助学费】——中位数

这显然是一道关于中位数的水题。

那么简化问题及为:

要求选出的N头牛的成绩的中位数尽可能大,我们可以考虑依次讨论每头奶牛的成绩是否适合作为中位数。

1.先把牛们的分数由小到大排序

那么这个中位数显然在[n/2+1…c-n/2]中。

2.若k位于这个范围[n/2+1…c-n/2],那么Score[k]是否是一个合理的中位数呢?

在[1…k-1]间定要选出n/2头牛,我们希望选总学费尽量少n/2头奶牛,设该学费总额为Left[k](left[k]表示在k这头牛左边满足n/2头牛的钱的最小的总和,right同理)

在[k+1…c]间定也要选出n/2头牛,我们也希望选总学费尽量少n/2头奶牛,设该学费总额为Right[k]

如果满足left[k]+right[k]+money[k]<=F

那么这就是一种合理的情况

最终找出满足条件 Left[k]+Right[k]+Money[k]<=F 的最大的一个k,它对应的Score[k]即为答案。

3.求[n/2+1…c-n/2]中每个数对应的left[ ]和right[ ]

建立一个大根堆,把最左边的n/2头牛所要的费用存到堆里面,用sum记下总和。
设当前讨论到了第k头牛

if(money[k]<堆顶元素)就用money[k]把堆顶元素换掉

继续讨论下一头牛


right[ ]的求法同left[ ]!

AC代码


#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
struct node{int fen,money,left,right;}cow[100005];
int C,N,F;
priority_queue<int>q;
bool cmp(node a,node b){return a.fen==b.fen?a.money<b.money:a.fen<b.fen;}
void init(){
	scanf("%d%d%d",&N,&C,&F);
	for(int i=1;i<=C;i++)scanf("%d%d",&cow[i].fen,&cow[i].money);
	sort(cow+1,cow+1+C,cmp); //先要排序
}
void LEFT(){//左边
	int sum=0;
	for(int i=1;i<=N/2;i++){
		q.push(cow[i].money);
		sum+=cow[i].money;
	}//最左边的
	for(int i=N/2+1;i<=C-N/2;i++){
		int t=q.top();
		cow[i].left=sum;
		if(cow[i].money<t){
			q.pop();
			sum=sum-t+cow[i].money;
			q.push(cow[i].money);
		}
	}
	while(!q.empty())q.pop();
}
void RIGHT(){//右边
	int sum=0;
	for(int i=C;i>=C-N/2+1;i--){
		q.push(cow[i].money);
		sum+=cow[i].money;
	}//最右边的
	for(int i=C-N/2;i>=N/2+1;i--){
		int t=q.top();
		cow[i].right=sum;
		if(cow[i].money<t){
			q.pop();
			sum=sum-t+cow[i].money;
			q.push(cow[i].money);
		}//互换
	}
}
int main(){
	int ans=-1;//赋值为-1
	init();
	LEFT();
	RIGHT();
	for(int i=C-N/2;i>=N/2+1;i--){
		if(cow[i].left+cow[i].right+cow[i].money<=F){
			ans=cow[i].fen;
			break;
		}
	}
	printf("%d",ans);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

go_bananas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值