这显然是一道关于中位数的水题。
那么简化问题及为:
要求选出的N头牛的成绩的中位数尽可能大,我们可以考虑依次讨论每头奶牛的成绩是否适合作为中位数。
1.先把牛们的分数由小到大排序
那么这个中位数显然在[n/2+1…c-n/2]中。
2.若k位于这个范围[n/2+1…c-n/2],那么Score[k]是否是一个合理的中位数呢?
在[1…k-1]间定要选出n/2头牛,我们希望选总学费尽量少n/2头奶牛,设该学费总额为Left[k](left[k]表示在k这头牛左边满足n/2头牛的钱的最小的总和,right同理)
在[k+1…c]间定也要选出n/2头牛,我们也希望选总学费尽量少n/2头奶牛,设该学费总额为Right[k]
如果满足left[k]+right[k]+money[k]<=F
那么这就是一种合理的情况
最终找出满足条件 Left[k]+Right[k]+Money[k]<=F 的最大的一个k,它对应的Score[k]即为答案。
3.求[n/2+1…c-n/2]中每个数对应的left[ ]和right[ ]
建立一个大根堆,把最左边的n/2头牛所要的费用存到堆里面,用sum记下总和。
设当前讨论到了第k头牛
if(money[k]<堆顶元素)就用money[k]把堆顶元素换掉
继续讨论下一头牛
right[ ]的求法同left[ ]!
AC代码
#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
struct node{int fen,money,left,right;}cow[100005];
int C,N,F;
priority_queue<int>q;
bool cmp(node a,node b){return a.fen==b.fen?a.money<b.money:a.fen<b.fen;}
void init(){
scanf("%d%d%d",&N,&C,&F);
for(int i=1;i<=C;i++)scanf("%d%d",&cow[i].fen,&cow[i].money);
sort(cow+1,cow+1+C,cmp); //先要排序
}
void LEFT(){//左边
int sum=0;
for(int i=1;i<=N/2;i++){
q.push(cow[i].money);
sum+=cow[i].money;
}//最左边的
for(int i=N/2+1;i<=C-N/2;i++){
int t=q.top();
cow[i].left=sum;
if(cow[i].money<t){
q.pop();
sum=sum-t+cow[i].money;
q.push(cow[i].money);
}
}
while(!q.empty())q.pop();
}
void RIGHT(){//右边
int sum=0;
for(int i=C;i>=C-N/2+1;i--){
q.push(cow[i].money);
sum+=cow[i].money;
}//最右边的
for(int i=C-N/2;i>=N/2+1;i--){
int t=q.top();
cow[i].right=sum;
if(cow[i].money<t){
q.pop();
sum=sum-t+cow[i].money;
q.push(cow[i].money);
}//互换
}
}
int main(){
int ans=-1;//赋值为-1
init();
LEFT();
RIGHT();
for(int i=C-N/2;i>=N/2+1;i--){
if(cow[i].left+cow[i].right+cow[i].money<=F){
ans=cow[i].fen;
break;
}
}
printf("%d",ans);
}