归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
- 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
- 自下而上的迭代;
在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。
说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。
2. 算法步骤
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
- 重复步骤 3 直到某一指针达到序列尾;
- 将另一序列剩下的所有元素直接复制到合并序列尾。
3. 动图演示
代码实现
package com.data.algorithm;
/**
* 排序类型: 并归排序
* 最优:O(n)
* 最差时间复杂度:O(nlogn)
* 平均时间复杂度:O(nlogn)
* 空间复杂度:O(n)
* 算法点评:结构复杂,效率一般
* */
public class MergeSortDEMO {
public static void main(String[] args) {
int[] ins = {100,2,3,5,1,23,6,78,34,2345,4,67,1,1,467,56};
mergeSort(ins);
for(int in: ins){
System.out.print(in+",");
}
}
/**
* 归并排序入口
* */
public static void mergeSort(int[] array) {
if (array == null || array.length == 0)
return;
//申请缓存空间
int[] temp = new int[array.length];
mergeSort(array, 0, array.length - 1, temp);
}
//三次归并
private static void mergeSort(int array[], int first, int last, int temp[]) {
if (first < last) {
int mid = (first + last) / 2;
//1.递归归并左边元素
mergeSort(array, first, mid, temp);
//2.递归归并右边元素
mergeSort(array, mid + 1, last, temp);
//3.再将二个有序数列合并
mergeArray(array, first, mid, last, temp);
}
}
/**
* 合并两个有序数组
* array[first]~array[mid]为第一组
* array[mid+1]~array[last]为第二组
* temp[]为存放两组比较结果的临时数组
*/
private static void mergeArray(int array[], int first, int mid, int last, int temp[]) {
int i = first, j = mid + 1; //i为第一组的起点, j为第二组的起点
int m = mid, n = last; //m为第一组的终点, n为第二组的终点
int k = 0; //k用于指向temp数组当前放到哪个位置
//1.将两个有序序列循环比较, 填入数组temp
while (i <= m && j <= n) {
if (array[i] <= array[j])
temp[k++] = array[i++];
else
temp[k++] = array[j++];
}
//2.如果比较完毕, 第一组还有数剩下, 则全部填入temp
while (i <= m) {
temp[k++] = array[i++];
}
//3.如果比较完毕, 第二组还有数剩下, 则全部填入temp
while (j <= n) {
temp[k++] = array[j++];
}
//4.将排好序的数填回到array数组的对应位置
for (i = 0; i < k; i++) {
array[first + i] = temp[i];
}
}
}