javascript全局函数 函数重载 bom对象

Js的全局函数

由于不属于任何一个对象,直接使用

-eval():执行JS代码(如果字符串是一个js代码,直接执行函数里面的代码)

*var str=”alert(“1245”)”;

*eval(str);//运行alert()函数

-encodeURI():对字符串进行编码

*var str=”哈哈哈abc123”;

*document.write(encodeURI(str));

//编码成%E5%93%88%E5%93%88%E5%93%88abc123

-decodeURI():对字符串进行解码

 

-isNaN():判断当前字符串是否是数字,如果是数字返回false,否则返回true

*var str=”123”;

*isNaN(str);//返回false

-parseInt():解析一个字符串并返回一个整数

*var str=”123”;

*document.write(parseInt(str)+1);//打印124

Js的函数重载

Js的重载是否存在? 不存在

但是可以通过其他方式模拟重载

每个函数都有一个参数数组arguments,将传递的参数传递到这个数组中

*function add(){

If(arguments.length==2){

}

Else if(){

}...

}

js的bom对象

*bom:broswer object model:浏览器对象模型

 

*有哪些对象?

*navigator:获取客户机的信息(浏览器的信息)

-navigator.appName:返回浏览器全名 但是一般返回Netscape

*screen:获取屏幕的信息

 

*location:请求URL地址

-href属性

获取到当前的URL的地址:document.write(location.href);

设置URL地址 location.href = “log.html”

比如想要设置一个按钮,按钮上绑定一个事件,页面可以跳到其他页面

鼠标点击事件 在<input οnclick=”js的方法”>

*history:请求的URL的历史记录

-创建三个页面

  1. 创建第一个页面a.html写一个超链接到b.html
  2. 创建b.html超链接到c.html
  3. 创建c.html

记:使用history.back()回到上一个页面 或者history.go(-1)

         history.forward()回到下一个页面或者history.go(1)

*window(重点)表示一个窗口对象 顶层对象(所有的bom对象都是在window里面操作的)

方法:

-window.alert() 简写alert():页面弹出一个框,显示内容

-confirm():确认框

*window.confirm(“确定删除吗?”);//确定取消框 如果点击确定返回true,如果点击取消返回false

-prompt():输入的对话框

*prompt("请输入:","this to ");

-open():打开一个新的窗口

*open(“打开的新窗体的地址URL” , ”” ,”窗体特征,比如窗口的高度和宽度”)

创建一个按钮,点击这个按钮,打开一个新的窗口

*open(“hello.html”, “” ,”hright = 200,height=100”);

-close():关闭这个窗口(浏览器兼容性差)

 

-setInterval():在设定时间调用传递的函数,一直执行

*setInterval(“js的代码”,毫秒数)

*setInterval(“alert(“sgd”);”,2000);两秒后执行alert

- setTimeout():在指定的时间后调用代码只会执行一次

*setTimeout(“alert(“sdf”);”,2000);两秒后执行alert

-clearInterval():清除setInterval设置的定时器

*clearInterval(id);通过删除setInterval()返回的id来清除定时器

-clearTimeout:清除setTimeout设置的定时器

*clearTimeout(id);通过删除setTimeout()返回的id来清除定时器

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值