coursera机器学习-Week5编程作业: Neural Network Learning

1.4 nnCostFunction.m

正向传播: J ( θ ) = 1 m ∑ i = 1 m ∑ k = 1 K [ − y k ( i ) l o g ( ( h θ ( x ( i ) ) ) k ) − ( 1 − y k ( i ) ) l o g ( 1 − ( h θ ( x ( i ) ) ) k ) ] + λ 2 m [ ∑ j = 1 25 ∑ k = 1 400 ( θ j , k ( 1 ) ) 2 + ∑ j = 1 10 ∑ k = 1 25 ( θ j , k ( 2 ) ) 2 ] J(\theta)=\frac{1}{m}\sum_{i=1}^m{\sum_{k=1}^K{\left[-y_k^{(i)}log\left((h_\theta(x^{(i)}))_k\right) - (1-y_k^{(i)})log\left(1-(h_\theta(x^{(i)}))_k\right)\right]}}+\frac{\lambda}{2m}\left[\sum_{j=1}^{25}{\sum_{k=1}^{400}{(\theta_{j,k}^{(1)})^2}}+\sum_{j=1}^{10}{\sum_{k=1}^{25}}{(\theta_{j,k}^{(2)})^2}\right] J(θ)=m1i=1mk=1K[yk(i)log((hθ(x(i)))k)(1yk(i))log(1(hθ(x(i)))k)]+2mλ[j=125k=1400(θj,k(1))2+j=110k=125(θj,k(2))2]

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);
         
% You need to return the following variables correctly 
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the 
%               first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.
%

% Feedforward and cost function
layer1 = [ones(m, 1) X];
z2 = layer1*Theta1';
layer2 = sigmoid(z2);
layer2 = [ones(m, 1) layer2];
z3 = layer2*Theta2';
layer3 = sigmoid(z3);

yMatrix = zeros(m, num_labels);
for i = 1 : m
    yMatrix(i, y(i)) = 1;
end;

for i = 1 : m
    J += sum(-1 * yMatrix(i,:).*log(layer3(i,:)) - (1-yMatrix(i,:)).*log(1-layer3(i,:)));
end;
J = J / m;
J += lambda/2/m * (sum(sum(Theta1(:, 2 : end).^ 2)) + sum(sum(Theta2(:, 2 : end).^ 2)));

2.1 sigmoidGradient.m

{ g ′ ( z ) = d d z g ( z ) = g ( z ) ( 1 − g ( z ) ) s i g m o i d ( z ) = g ( z ) = 1 1 + e − z \begin{cases} g'(z) = \frac{d}{dz}g(z) = g(z)(1-g(z)) & \\ sigmoid(z) = g(z) = \frac{1}{1+e^{-z}} & \end{cases} {g(z)=dzdg(z)=g(z)(1g(z))sigmoid(z)=g(z)=1+ez1

function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
%   g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
%   evaluated at z. This should work regardless if z is a matrix or a
%   vector. In particular, if z is a vector or matrix, you should return
%   the gradient for each element.

g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
%               each value of z (z can be a matrix, vector or scalar).

g = sigmoid(z) .* (1 - sigmoid(z));

% =============================================================

end

2.2 randInitializeWeights.m

复粘…

function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
%   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
%   of a layer with L_in incoming connections and L_out outgoing 
%   connections. 
%
%   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
%   the first column of W handles the "bias" terms
%

% You need to return the following variables correctly 
W = zeros(L_out, 1 + L_in);

% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
%               training the neural network.
%
% Note: The first column of W corresponds to the parameters for the bias unit
%

epsilon_init = 0.12
W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;

% =========================================================================

end

2.3 nnCostFunction.m

补充反向传播算法

% Backpropagation
Delta1 = zeros(size(Theta1));
Delta2 = zeros(size(Theta2));

for t = 1 : m
    delta3 = (layer3(t, :) - yMatrix(t, :))';
    delta2 = (Theta2'*delta3)(2:end).*sigmoidGradient(z2(t, :))';
    Delta2 += delta3*layer2(t, :);
    Delta1 += delta2*layer1(t, :);
end;
Theta2_grad = Delta2 / m;
Theta1_grad = Delta1 / m;

2.5 nnCostFunction.m

补充正则化梯度

% regularized neural networks
Theta2_grad(:, 2:end) += lambda/m * Theta2(:, 2:end);
Theta1_grad(:, 2:end) += lambda/m * Theta1(:, 2:end);

// TODO: 待补充更多细节

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值