一、生产者
1.分区策略
-
分区的原因
(1)
方便在集群中扩展
,每个
Partition
可以通过调整以适应它所在的机器,而一个
topic
又可以有多个
Partition
组成,因此整个集群就可以适应任意大小的数据了。
(2)
可以提高并发
,因为可以以
Partition
为单位读写了。
-
分区的原则
我们需要将
producer
发送的数据封装成一个
ProducerRecord
对象。
(
1
)指明
partition
的情况下,直接将指明的值直接作为
partiton
值
(2)没有指明
partition
值但有
key
的情况下,将
key
的
hash
值与
topic
的
partition 数进行取余得到 partition
值
(3)既没有 partition
值又没有
key
值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic
可用的
partition
总数取余得到
partition 值,也就是常说的 round-robin
算法
2.数据可靠性保证
为保证
producer
发送的数据,能可靠的发送到指定的
topic
,
topic
的每个
partition
收到
producer
发送的数据后,都需要向
producer
发送
ack
(
acknowledgement
确认收到),如果
producer
收到
ack
,就会进行下一轮的发送,否则重新发送数据。
-
副本数据同步策略
Kafka 选择了第二种方案,原因如下:
1.
同样为了容忍
n
台节点的故障,第一种方案需要
2n+1
个副本,而第二种方案只需要
n+1
个副本,而
Kafka
的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
2.虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小。
-
ISR
采用第二种方案之后,设想以下情景:
leader
收到数据,所有
follower
都开始同步数据,
但有一个
follower
,因为某种故障,迟迟不能与
leader
进行同步,那
leader
就要一直等下去,
直到它完成同步,才能发送
ack
。这个问题怎么解决呢?
Leader
维护了一个动态的
in-sync replica set (ISR)
,意为和
leader
保持同步的
follower
集
合。当
ISR
中的
follower
完成数据的同步之后,
leader
就会给
follower
发送
ack
。如果
follower
长时间 未 向
leader
同 步 数 据 , 则 该
follower
将 被 踢 出
ISR , 该 时 间 阈 值 由replica.lag.time.max.ms
参数设定。
Leader
发生故障之后,就会从
ISR
中选举新的
leader
。
-
ack应答机制
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,
所以没必要等
ISR
中的
follower
全部接收成功。
所以
Kafka
为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,
选择以下的配置。
acks
参数配置:
acks
:
0
:
producer
不等待
broker
的
ack
,这一操作提供了一个最低的延迟,
broker
一接收到还
没有写入磁盘就已经返回,当
broker
故障时有可能
丢失数据
;
1
:
producer
等待
broker
的
ack
,
partition
的
leader
落盘成功后返回
ack
,如果在
follower
同步成功之前
leader
故障,那么将会
丢失数据
;
-1
(
all
):
producer
等待
broker
的
ack
,
partition
的
leader
和
follower
全部落盘成功后才
返回
ack
。但是如果在
follower
同步完成后,
broker
发送
ack
之前,
leader
发生故障,那么会
造成
数据重复
。
-
故障处理细节
Log文件中的HW和LEO:
LEO
:指的是每个副本最大的
offset
;
HW
:指的是消费者能见到的最大的
offset
,
ISR
队列中最小的
LEO
。
(
1
)
follower
故障
follower
发生故障后会被临时踢出
ISR
,待该
follower
恢复后,
follower
会读取本地磁盘
记录的上次的
HW
,并将
log
文件高于
HW
的部分截取掉,从
HW
开始向
leader
进行同步。
等该
follower
的
LEO
大于等于该
Partition
的
HW
,即
follower
追上
leader
之后,就可以重
新加入
ISR
了。
(
2
)
leader
故障
leader
发生故障之后,会从
ISR
中选出一个新的
leader,之后,为保证多个副本之间的
数据一致性,其余的
follower
会先将各自的
log
文件
高于
HW
的部分截掉
,然后从新的
leader
同步数据。
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
3.Exactly Once 语义
将服务器的
ACK
级别设置为
-1
,可以保证
Producer
到
Server
之间不会丢失数据,即
At
Least Once
语义
。相对的,将服务器
ACK
级别设置为
0
,可以保证生产者每条消息只会被
发送一次,即
At Most Once
语义。
At Least Once
可以保证数据不丢失,但是不能保证数据不重复;相对的,
At Least Once
可以保证数据不重复,但是不能保证数据不丢失。
但是,对于一些非常重要的信息,比如说
交易数据,下游数据消费者要求数据既不重复也不丢失,即
Exactly Once
语义。
在
0.11
版
本以前的
Kafka
,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局
去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。
0.11
版本的
Kafka
,引入了一项重大特性:幂等性。所谓的幂等性就是指
Producer
不论
向
Server
发送多少次重复数据,
Server
端都只会持久化一条。幂等性结合
At Least Once
语
义,就构成了
Kafka
的
Exactly Once 语义。即:At Least Once +
幂等性
= Exactly Once
要启用幂等性,只需要将
Producer
的参数中
enable.idompotence
设置为
true
即可。
Kafka
的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的
Producer
在
初始化的时候会被分配一个
PID
,发往同一
Partition
的消息会附带
Sequence Number
。而
Broker
端会对
<PID, Partition, SeqNumber>
做缓存,当具有相同主键的消息提交时,
Broker
只
会持久化一条。
但是
PID
重启就会变化,同时不同的
Partition
也具有不同主键,所以幂等性无法保证跨
分区跨会话的
Exactly Once
。
二、消费者
1.消费方式
consumer
采用
pull
(拉)模式从
broker
中读取数据。
push
(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由
broker
决定的。
它的目标是尽可能以最快速度传递消息,但是这样很容易造成
consumer
来不及处理消息,
典型的表现就是拒绝服务以及网络拥塞。而
pull
模式则可以根据
consumer
的消费能力以适
当的速率消费消息。
pull
模式不足之处是,如果
kafka
没有数据,消费者可能会陷入循环中,一直返回空数
据。
针对这一点,
Kafka
的消费者在消费数据时会传入一个时长参数
timeout
,如果当前没有
数据可供消费,
consumer
会等待一段时间之后再返回,这段时长即为
timeout
。
2.分区分配策略
一个
consumer group
中有多个
consumer
,一个
topic
有多个
partition
,所以必然会涉及
到
partition
的分配问题,即确定那个
partition
由哪个
consumer
来消费。
Kafka
有两种分配策略,一是
RoundRobin
,一是
Range
。
-
RoundRobin
-
Range
3.offset的维护
由于
consumer
在消费过程中可能会出现断电宕机等故障,
consumer
恢复后,需要从故
障前的位置的继续消费,所以
consumer
需要实时记录自己消费到了哪个
offset
,以便故障恢
复后继续消费。
Kafka 0.9
版本之前,
consumer
默认将
offset
保存在
Zookeeper
中,从
0.9
版本开始,
consumer
默认将
offset
保存在
Kafka
一个内置的
topic
中,该
topic
为
__consumer_offsets
。
(1)修改配置文件 consumer.properties
exclude.internal.topics=false
(2)读取 offset
0.11.0.0
之前版本
:
bin/kafka-console-consumer.sh --topic __consumer_offsets --
zookeeper hadoop102:2181 --formatter
"kafka.coordinator.GroupMetadataManager\$OffsetsMessageFormatter"
--consumer.config config/consumer.properties --from-beginning
0.11.0.0
之后版本
(
含
):
bin/kafka-console-consumer.sh --topic __consumer_offsets --
zookeeper hadoop102:2181 --formatter
"kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageForm
atter" --consumer.config config/consumer.properties --frombeginning
4.消费者组案例
需求:测试同一个消费者组中的消费者,同一时刻只能有一个消费者消费。
案例实操:
(1)在 hadoop102、hadoop103 上修改/opt/module/kafka/config/consumer.properties 配置
文件中的
group.id
属性为任意组名。
[atguigu@hadoop103 config]$ vi consumer.properties
group.id=atguigu
(2)在
hadoop102
、
hadoop103
上分别启动消费者
[atguigu@hadoop102 kafka]$ bin/kafka-console-consumer.sh \
--zookeeper hadoop102:2181 --topic first --consumer.config
config/consumer.properties
[atguigu@hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first --consumer.config
config/consumer.properties
(3)在
hadoop104
上启动生产者
[atguigu@hadoop104 kafka]$ bin/kafka-console-producer.sh \
--broker-list hadoop102:9092 --topic first
>hello world
(4)
查看
hadoop102
和
hadoop103
的接收者。
同一时刻只有一个消费者接收到消息。