godkzz
码龄5年
关注
提问 私信
  • 博客:107,184
    107,184
    总访问量
  • 98
    原创
  • 630,375
    排名
  • 8
    粉丝
  • 0
    铁粉

个人简介:多多益善

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2019-11-10
博客简介:

godkzz的博客

查看详细资料
个人成就
  • 获得76次点赞
  • 内容获得11次评论
  • 获得223次收藏
  • 代码片获得464次分享
创作历程
  • 7篇
    2022年
  • 95篇
    2021年
成就勋章
TA的专栏
  • spring-boot
    10篇
  • redis
    5篇
  • spring-cloud
    8篇
  • 大数据
    29篇
  • MQ
    6篇
  • vue
    2篇
  • mysql
    1篇
  • js
    1篇
  • spring
    3篇
  • 其它
    1篇
  • spring-security
    7篇
  • Mybatis
    7篇
  • JAVA-线程
    8篇
  • spring-mvc
    9篇
  • JAVA-动态代理
    1篇
  • JAVA-IO
    2篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Redis搭配RedisTemplate实现分布式锁实战实例

一、SETNX在Redis中一般会使用setnx命令实现分布式锁。当使用setnx命令设置一个kv时如:setnx lockKey lockValue当lockKey存在时,会返回1时表示设置成功。当lockKey不存在时,会返回0时表示设置值失败。根据以上理论就可以实现redis的分布式锁:加锁第一版:只使用setnx,这种方式的缺点是容易产生死锁,因为有可能忘记解锁,或者解锁失败。setnx key value第二版:给锁增加了过期时间,避免出现死锁
原创
发布博客 2022.01.13 ·
12106 阅读 ·
17 点赞 ·
0 评论 ·
63 收藏

Seata分布式事务失效,不生效(事务不回滚)的常见场景

一、微服务没有正常获取XID检查方法:在每个微服务中调用方法 RootContext.getXID() 检查XID例如,服务A调用了服务B和服务C那么可以分别在服务A、服务B、服务C的事务方法中添加===============服务A@Servicepublic class ServiceAImpl implements IServiceA{ private static final Logger log = LoggerFactory.getLogger(Serv
原创
发布博客 2022.01.09 ·
14593 阅读 ·
6 点赞 ·
2 评论 ·
26 收藏

Seata启动错误Communications link failure解决方法

1.检查jdbc驱动版本和mysql版本是否一致2.检查jdbc连接地址是否正确有可能是因为版本问题,连接地址参数中没有加上时区:jdbc:mysql://127.0.0.1:3306/ry-seata?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B83.检查driverClassN..
原创
发布博客 2022.01.08 ·
2198 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java大数据-DataX从 Oracle 中读取数据存到 MySQL、读取 Oracle 的数据存入 HDFS 中

一、读取数据存到 MySQL1.MySQL 中创建表 [oracle@hadoop102 ~]$ mysql -uroot -p000000mysql> create database oracle;mysql> use oracle;mysql> create table student(id int,name varchar(20));2.编写 datax 配置文件[oracle@hadoop102 ~]$ vim /opt/module/datax/job
原创
发布博客 2022.01.04 ·
1828 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java大数据-DataX读取 MySQL 中的数据存放到 HDFS、读取 HDFS 数据写入 MySQL

一、读取MySQL 中的数据存放到 HDFS官方模板[atguigu@hadoop102 ~]$ python /opt/module/datax/bin/datax.py -r mysqlreader -w hdfswriter{ "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "column": [], "connection": [ { "jdbcUrl": [], .
原创
发布博客 2022.01.04 ·
2189 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

Java大数据-DataX从stream流读取数据并打印到控制台

一、查看配置模板[atguigu@hadoop102 bin]$ python datax.py -r streamreader -w streamwriterDataX (DATAX-OPENSOURCE-3.0), From Alibaba !Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.Please refer to the streamreader document: https://github.com/ali
原创
发布博客 2022.01.04 ·
983 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java大数据-DataX入门

一、DataX概述 简介 DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据 库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高 效的数据同步功能。 设计 为了解决异构数据源同步问题,DataX 将复杂的网状的同步链路变成了星型数据链路, DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要 将此数据源对接到 DataX,便能跟已有
原创
发布博客 2022.01.04 ·
660 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Kafka的生产者与消费者解析

一、生产者1.分区策略 分区的原因 (1)方便在集群中扩展,每个 Partition 可以通过调整以适应它所在的机器,而一个 topic 又可以有多个 Partition 组成,因此整个集群就可以适应任意大小的数据了。(2)可以提高并发,因为可以以 Partition 为单位读写了。 分区的原则 我们需要将 producer 发送的数据封装成一个 ProducerRecord 对象。(1)指明 partition 的情况下,直接将指明的值直接作为 p.
原创
发布博客 2021.12.29 ·
1174 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Kafka工作流程及文件存储机制

Kafka 中消息是以 topic 进行分类的,生产者生产消息,消费者消费消息,都是面向 topic 的。 topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文 件,该 log 文件中存储的就是 producer 生产的数据。Producer 生产的数据会被不断追加到该 log 文件末端,且每条数据都有自己的 offset。消费者组中的每个消费者,都会实时记录自己 消费到了哪个 offset,以便出错恢复时,从上次...
原创
发布博客 2021.12.29 ·
113 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Kafka的点对点模式、发布订阅模式、基础架构

一、定义Kafka 是一个分布式的基于发布/订阅模式的消息队列(Message Queue),主要应用于 大数据实时处理领域。二、消息队列 使用消息队列的好处 1)解耦允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。2)可恢复性 系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所 以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。3)缓冲有助于控制和优化数据流经过系统的速度,解决生产...
原创
发布博客 2021.12.27 ·
5864 阅读 ·
4 点赞 ·
1 评论 ·
11 收藏

Java大数据-HBase 在java中创建表、删除表、向表中插入数据、删除多行数据、获取所有数据、获取某一行数据、获取某一行指定“列族:列”的数据

一、环境准备在pom中添加依赖<dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.3.1</version></dependency><dependency> <groupId>org.apache.hbase</gro
原创
发布博客 2021.12.27 ·
1088 阅读 ·
0 点赞 ·
0 评论 ·
14 收藏

Java大数据-HBase读写流程、MemStore Flush、StoreFile Compaction、Region Split

一、写流程(1)Client 先访问 zookeeper,获取 hbase:meta 表位于哪个 Region Server(2)访问对应的 Region Server,获取 hbase:meta 表,根据读请求的 namespace:table/rowkey, 查询出目标数据位于哪个 Region Server 中的哪个 Region 中。并将该 table 的 region 信息以 及 meta 表的位置信息缓存在客户端的 meta cache,方便下次访问(3)与目标 Region .
原创
发布博客 2021.12.24 ·
196 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Java大数据-HBase入门

一、HBase 定义HBase 是一种分布式、可扩展、支持海量数据存储的 NoSQL 数据库。二、HBase 数据模型逻辑上,HBase 的数据模型同关系型数据库很类似,数据存储在一张表中,有行有列。 但从 HBase 的底层物理存储结构(K-V)来看,HBase 更像是一个 multi-dimensional map。三、HBase 逻辑结构四、HBase 物理存储结构五、数据模型(1)Name Space 命名空间,类似于关系型数据库的 Data.
原创
发布博客 2021.12.24 ·
334 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Java大数据-Flume事务

Flume Agent 内部原理(1)ChannelSelector ChannelSelector 的作用就是选出 Event 将要被发往哪个 Channel。其共有两种类型, 分别是 Replicating(复制)和 Multiplexing(多路复用)。ReplicatingSelector 会将同一个 Event 发往所有的 Channel,Multiplexing 会根据相应的原则,将不同的 Event 发往不同的 Channel。(2)SinkProcessor...
原创
发布博客 2021.12.24 ·
108 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java大数据-Flume基础架构、监听数据端口、实时监控单个追加文件、实时监控目录下多个新文件、实时监控目录下的多个追加文件

一、Flume 定义 Flume 是Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume 基于流式架构,灵活简单。基础架构(1)AgentAgent 是一个 JVM 进程,它以事件的形式将数据从源头送至目的。Agent 主要有 3 个部分组成,Source、Channel、Sink。(2)SourceSource 是负责接收数据到 Flume Agent 的组件。Source 组件可以处理各种类型、各种...
原创
发布博客 2021.12.24 ·
415 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Java大数据-Sqoop数据导入与导出

一、Sqoop简介Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。Sqoop项目开始于2009年,最早是作为Hadoop的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop独立成为一个Apache项
原创
发布博客 2021.12.23 ·
536 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Java大数据-HiveDML数据导入与导出、Truncate

一、数据导入1.向表中装载数据(Load)语法load data [local] inpath '/opt/module/datas/student.txt' overwrite | into table student [partition (partcol1=val1,…)](1)load data:表示加载数据(2)local:表示从本地加载数据到hive表;否则从HDFS加载数据到hive表(3)inpath:表示加载数据的路径(4)overwrite:表示覆盖表
原创
发布博客 2021.12.22 ·
309 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java大数据-Hive分区表基本操作、注意事项

分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过WHERE子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多。一、分区表基本操作1.引入分区表(需要根据日期对日志进行管理)/user/hive/warehouse/log_partition/20170702/20170702.log/user/hive/warehouse/log_partit.
原创
发布博客 2021.12.22 ·
482 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java大数据-Hive创建表、管理表、外部表、管理表与外部表的互相转换

一、创建表1.建表语法CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORT
原创
发布博客 2021.12.22 ·
514 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Java大数据-Hive所有数据类型解析及类型转化

一、基本数据类型对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储2GB的字符数。二、集合数据类型Hive有三种复杂数据类型ARRAY、MAP 和 STRUCT。ARRAY和MAP与Java中的Array和Map类似,而STRUCT与C语言中的Struct类似,它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。三、案例 假设某表有如下一行,我们用JSON格式来...
原创
发布博客 2021.12.22 ·
873 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多