题目链接:https://nanti.jisuanke.com/t/31460
思路:
这题最棘手的就是求和元素的系数是递减的;
假设有 1 2 3 4 5 ,要求 2到4的结果
那么有
1 2 3 4 5 我们要求的就是 2 3 4 ,会发现我们要求的结果就是左边的区间和,然后再减去 2+3+4 ;
1 2 3 4 2 3 , 如果要求的区间是 2到3,那么就是左边区间和,然后再减去两倍的(2+3);
1 2 3 2 ,这里的倍数表达式是 n-R;
1 2
1
左边的元素和用a1存储,单个元素的和用a存储,那么得到一个公式就是 ans = a1的区间和-(n-R)*a的区间和;
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue>
#include<map>
#include<stack>
#include<sstream>
#include<vector>
#include<string>
#include<set>
using namespace std;
#define IOS ios::sync_with_stdio(false); cin.tie(0);
#define REP(i,n) for(int i=0;i<n;++i)
#define lowbit(x) x&(-x)
int read(){
int r=0,f=1;char p=getchar();
while(p>'9'||p<'0'){if(p=='-')f=-1;p=getchar();}
while(p>='0'&&p<='9'){r=r*10+p-48;p=getchar();}return r*f;
}
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<long long,long long> pll;
const int Maxn = 1e5+10;
const long long LINF = 1e18;
const int INF = 0x3f3f3f3f;
const int Mod = 10001;
const double PI = acos(-1.0);
int n;
ull a1[Maxn*2],a[Maxn*2];
ull sum (int x) {
ull ret = 0;
while (x > 0) {
ret+=a[x];
x-=lowbit(x);
}
return ret;
}
void updata (int x,int val) {
while (x <= n) {
a[x]+=val;
x+=lowbit(x);
}
}
ull sum1(int x) {
ull ret = 0;
while (x > 0) {
ret+=a1[x];
x-=lowbit(x);
}
return ret;
}
void updata1(int x,ull val) {
while (x <= n) {
a1[x]+=val;
x+=lowbit(x);
}
}
int main (void)
{
int q;
ll tmp;
scanf("%d%d",&n,&q);
for (int i = 1; i <= n; ++i) {
scanf("%lld",&tmp);
updata (i,tmp); // 元素和
updata1(i,(ull)(n-i+1)*tmp); // (n-i+1)*a[i]的元素和
}
int L,R,op;
while (q--) {
scanf("%d%d%d",&op,&L,&R);
if(op == 1) {
ull ans = (n-R)*(sum(R)-sum(L-1));
ull ans1 = sum1(R)-sum1(L-1);
printf("%lld\n",ans1-ans);
} else {
ull tmp = sum(L)-sum(L-1); // 这里是为了取出未改边前 L这个位置的元素
// 注意L这个位置元素不用直接通过 a[L]得到
// 比如 a[2] = A1+A2,显然a[2] != A2;
updata(L,R-tmp); // 带进updata的值是当前修改的值与原先的差值
updata1(L,(ull)(n-L+1)*(R-tmp));
}
}
return 0;
}