今天你会收获的
• DeepSeek 如此聪明,提示词是否还重要
• DeepSeek-R1 和 V3 模型的不同性格
• 推理模型和非推理模型不同的提问策略
• 设计提示词,让 DeepSeek 做炫酷图表和动画
• DeepSeek 并非完美:搞清优点和缺陷
• 谈谈最近爆火的 Manus 智能体
内容精要:
推理(如DeepSeek-R1)提示词变化
不太需要
• 角色设定
• 思维链提示(中间过程)
• 结构化提示词
• 过多解释
• 过多干预、手把手教学
• 重复的“逐步思考”指
谨慎提供
样本提示(举些例子)
上下文和行业知识
仍然需要
充分提供背景信息
(六何分析法)
• RAG 知识库
• 使用分隔符提高清晰度
• 详细的最终目标和格式细节
通过提示词解决幻觉
1. 知识来源限定:指定权威来源作为回答依据。为了确保最好的效果,如果有可能,相关来源最好上传给AI,或者作为提示词的一部分附加上去。例如:请严格根据《中国药典》(2020版)回答以下关于黄连用量的问题。如信息不在药典中,请明确标注"暂无权威数据支持"。
2. 时间限定:通过明确时间范围,防止模型对未来事件进行虚构。例如:基于2023年之前已发表的科学文献,请解释暗物质研究的主要发现和限制。
3. 明确标注:要求模型对不确定内容进行明确标注。例如:请回答关于量子计算的问题,并对任何不确定的信息使用[低确定性]标签,对有争议的观点使用[存在争议]标签。
4. 移除幻觉部分:这是我经常使用的方法。DeepSeek的幻觉经常出现在举例和数据这两块。因此我们可以直接去除。例如:论证为何DeepSeek-R1模型很先进。注意严格按照科学方式解读,不要举例子,不要列举倍数、百分比等数字。
通过开发方法解决幻觉
RAG增强框架:检索增强生成(RAG)通过实时查询外部知识库,显著提高回答准确性。针对特定领域,可以整合专业知识库,弥补通用模型的知识短板。这种方法特别适用于医疗、法律、金融等高专业性领域,能显著提升专业准确性。
精细化训练与评估:通过针对性的微调和强化学习,可以显著降低特定类型的幻觉。同时,开发自动化评估工具,能及时识别和标记可能的幻觉内容,为用户提供风险提示。
修改推理参数:通过调整温度(Temperature)、Top P等推理参数,可以在某种程度上降低模型输出的幻觉。
欢迎关注“会飞一十六”公众号获取下载链接,一起探讨AI哲学
往期精彩
清华大学08-使用DeepSeek赋能家庭教育【文末附下载地址】