使用神经网络的步骤:
网络结构,即决定选择多少层及每层分别有多少个单元:
第一层的单元数即我们训练集的特征数量
最后一层的单元数即我们训练集的结果的类的数量
如果隐藏层数大于1,确保每个单元层的单元个数相同,通常情况下隐藏层单元个数越多越好.
训练神经网络:
参数的随机初始化
利用正向传播方法计算所有的h_θ(x)
编写计算代价函数J的代码
利用反向传播方法计算所有偏导数
利用数值检验方法检验这些偏导数
使用优化方法来最小化代价函数
使用神经网络的步骤:
网络结构,即决定选择多少层及每层分别有多少个单元:
第一层的单元数即我们训练集的特征数量
最后一层的单元数即我们训练集的结果的类的数量
如果隐藏层数大于1,确保每个单元层的单元个数相同,通常情况下隐藏层单元个数越多越好.
训练神经网络:
参数的随机初始化
利用正向传播方法计算所有的h_θ(x)
编写计算代价函数J的代码
利用反向传播方法计算所有偏导数
利用数值检验方法检验这些偏导数
使用优化方法来最小化代价函数