8、图像检索与纹理分析实验研究

图像检索与纹理分析实验研究

1. 图像检索实验基础

在图像检索领域,为了进行公平的基准测试,Lq 和 Cg 按照原始论文中的描述进行实现。对于 Lq,Hafner 在 RGB 颜色空间中使用了 256 个区间的直方图。在计算自相关图时,RGB 颜色空间使用 64 种颜色,空间距离采用 {1, 3, 5, 7},最终得到一个 256 维的特征向量,并使用 L1 进行比较。

在典型的图像检索应用中,查询结果是一个图像排名列表,用户通常只关注其中有限数量的结果。因此,在实验中我们考虑最佳的 s 个检索结果,这里的 s 被定义为范围。为了评估检索方法的性能,我们使用不同范围内的精度与召回率。对于查询图像 Qi 和范围 s > 0,召回率 r 和精度 p 的定义如下:
- 召回率 r:$r = \frac{|{I(i)_j | rank(I(i)_j) ≤ s}|}{m}$
- 精度 p:$p = \frac{|{I(i)_j | rank(I(i)_j) ≤ s}|}{s}$

另一个重要的性能评估指标是检索准确率,即在前 s 个匹配中找到正确副本的百分比。

2. Corel 数据库实验
2.1 实验背景与数据选择

我们使用 Corel 数据库中的 8200 张图像进行实验,该数据库被业余和专业图形设计师广泛使用,并且可以在 http://www.corel.com 上获取。实验中选择了两种最常用的颜色空间:RGB 和 HSV。

2.2 早期实验:噪声分类与分析

在测量特定方法的准确性之前,我们需要找到具有挑战性和客观性的真实基准。我们对典型的图像变化进

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值