图像检索与纹理分析实验研究
1. 图像检索实验基础
在图像检索领域,为了进行公平的基准测试,Lq 和 Cg 按照原始论文中的描述进行实现。对于 Lq,Hafner 在 RGB 颜色空间中使用了 256 个区间的直方图。在计算自相关图时,RGB 颜色空间使用 64 种颜色,空间距离采用 {1, 3, 5, 7},最终得到一个 256 维的特征向量,并使用 L1 进行比较。
在典型的图像检索应用中,查询结果是一个图像排名列表,用户通常只关注其中有限数量的结果。因此,在实验中我们考虑最佳的 s 个检索结果,这里的 s 被定义为范围。为了评估检索方法的性能,我们使用不同范围内的精度与召回率。对于查询图像 Qi 和范围 s > 0,召回率 r 和精度 p 的定义如下:
- 召回率 r:$r = \frac{|{I(i)_j | rank(I(i)_j) ≤ s}|}{m}$
- 精度 p:$p = \frac{|{I(i)_j | rank(I(i)_j) ≤ s}|}{s}$
另一个重要的性能评估指标是检索准确率,即在前 s 个匹配中找到正确副本的百分比。
2. Corel 数据库实验
2.1 实验背景与数据选择
我们使用 Corel 数据库中的 8200 张图像进行实验,该数据库被业余和专业图形设计师广泛使用,并且可以在 http://www.corel.com 上获取。实验中选择了两种最常用的颜色空间:RGB 和 HSV。
2.2 早期实验:噪声分类与分析
在测量特定方法的准确性之前,我们需要找到具有挑战性和客观性的真实基准。我们对典型的图像变化进
超级会员免费看
订阅专栏 解锁全文
678

被折叠的 条评论
为什么被折叠?



