量子计算中的博弈与搜索算法
1. 量子算法加速的经典示例:假币问题
在一些经典谜题中,量子算法展现出了远超经典算法的速度提升。以假币问题为例,使用量子算法可以实现四次方的加速。这里涉及到一个名为 B - Oracle 的概念,Oracle 在算法中被视为一个黑盒,用于简化电路,并为量子算法和经典算法提供复杂度比较。一个好的 Oracle 应具备速度、通用性和可行性。例如,当有 6 个硬币(N = 6)且其中 2 个为假币(k = 2)时,B - Oracle 的应用情况如图所示。
2. Mermin - Peres 魔法方块游戏
2.1 游戏规则
Mermin - Peres 魔法方块是另一个经典谜题,可作为量子伪心灵感应的示例。游戏由两名玩家 Alice 和 Bob 对抗一名裁判。魔法方块是一个 3x3 的矩阵,规则如下:
- 矩阵中的所有元素只能是 0 或 1,且每行元素之和为偶数,每列元素之和为奇数。由于矩阵元素个数为奇数,实际上不存在满足此条件的有效组合。
- 裁判向 Alice 发送一个整数 a(a ∈ {1, 2, 3}),向 Bob 发送另一个整数 b(b ∈ {1, 2, 3})。Alice 需回复矩阵的第 a 行,Bob 需回复矩阵的第 b 列。
- 如果 Alice 的回复元素之和为偶数,Bob 的回复元素之和为奇数,且他们回复的交叉元素相同,则 Alice 和 Bob 获胜;否则,裁判获胜。
- 在游戏开始前,Alice 和 Bob 可以制定策略并共享信息,但游戏过程中不允许交流。
例如,若裁判发送 a = 1 给 Alice,b = 2 给 Bob,Alice 回复 110(第 1 行),Bob 回复 100(第 2 列),交叉元素(第 1 行第 2 列)相同(均为 1),他们就赢得了游戏。在经典情况下,Alice 和 Bob 的获胜概率最多为 8/9(即 88.8%)。
2.2 经典获胜概率验证练习
为了验证经典情况下魔法方块游戏的获胜概率最多为 8/9,可进行以下练习:
1. 用二进制代码 (1, -1) 代替 (1, 0) 构建类似的魔法方块,使每行元素之积为 1(偶数),每列元素之积为 -1(奇数),并确认这种方块实际上是不可能存在的。
2. 为裁判给出的 a 和 b 的值创建一个排列表,包括排列计数、a 和 b 的值、Alice 和 Bob 的回复、他们回复的交叉元素(交叉元素相等时他们才能获胜)以及游戏迭代结果(胜 = W,负 = L)。
3. 最后计算获胜概率,证明其最多为 8/9。
2.3 量子获胜策略
借助量子力学的力量和纠缠的魔法,Alice 和 Bob 可以实现 100% 的获胜概率,就像他们能进行心灵感应一样,这就是所谓的量子伪心灵感应。量子获胜策略分为三个阶段:
-
共享纠缠态
:这是 Alice 和 Bob 100% 获胜的关键。他们共享的纠缠态为:
[
\Psi = \frac{1}{\sqrt{2}}|0011\rangle - \frac{1}{\sqrt{2}}|0110\rangle - \frac{1}{\sqrt{2}}|1001\rangle + \frac{1}{\sqrt{2}}|1100\rangle
]
电路实现需要为 Alice 和 Bob 各分配 2 个量子比特。以下是构建纠缠态的 Python 脚本:
# Create the entangle state
Q_program = QuantumProgram()
Q_program.set_api(Qconfig.APItoken, Qconfig.config["url"])
# 4 qubits (Alice = 2, Bob = 2)
N = 4
# Creating registers
qr = Q_program.create_quantum_register("qr", N)
# for recording the measurement on qr
cr = Q_program.create_classical_register("cr", N)
circuitName = "sharedEntangled"
sharedEntangled = Q_program.create_circuit(circuitName, [qr], [cr])
#Create uniform superposition of all strings of length 2
for i in range(2):
sharedEntangled.h(qr[i])
#The amplitude is minus if there are odd number of 1s
for i in range(2):
sharedEntangled.z(qr[i])
#Copy the content of the first two qubits to the last two qubits
for i in range(2):
sharedEntangled.cx(qr[i], qr[i+2])
#Flip the last two qubits
for i in range(2,4):
sharedEntangled.x(qr[i])
- 酉变换 :收到输入 a(a ∈ {1, 2, 3})和 b(b ∈ {1, 2, 3})后,Alice 和 Bob 对共享纠缠态应用以下酉变换:
-
Alice 的变换:
[
A_1 = \frac{1}{\sqrt{2}}
\begin{bmatrix}
0 & 0 & 1 & 0 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 1
\end{bmatrix},
A_2 = \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 1 & 1 & 1 \
1 & -1 & 1 & -1 \
1 & 1 & -1 & -1 \
1 & -1 & -1 & 1
\end{bmatrix},
A_3 = \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 1 & 1 & 1 \
1 & -1 & -1 & 1 \
1 & -1 & 1 & -1 \
1 & 1 & -1 & -1
\end{bmatrix}
] -
Bob 的变换:
[
B_1 = \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 1 & 1 & 1 \
1 & -1 & 1 & -1 \
1 & 1 & -1 & -1 \
1 & -1 & -1 & 1
\end{bmatrix},
B_2 = \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 1 & 1 & 1 \
1 & -1 & -1 & 1 \
1 & -1 & 1 & -1 \
1 & 1 & -1 & -1
\end{bmatrix},
B_3 = \frac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 0 & 0 & 1 \
1 & 0 & 0 & -1 \
0 & 1 & 1 & 0 \
0 & 1 & -1 & 0
\end{bmatrix}
]
以下是实现酉变换的 Python 代码:
#------ circuits of Alice's and Bob's operations.
#we first define controlled-u gates required to assign phases
from math import pi
def ch(qProg, a, b):
""" Controlled-Hadamard gate """
qProg.h(b)
qProg.sdg(b)
qProg.cx(a, b)
qProg.h(b)
qProg.t(b)
qProg.cx(a, b)
qProg.t(b)
qProg.h(b)
qProg.s(b)
qProg.x(b)
qProg.s(a)
return qProg
def cu1pi2(qProg, c, t):
""" Controlled-u1(phi/2) gate """
qProg.u1(pi/4.0, c)
qProg.cx(c, t)
qProg.u1(-pi/4.0, t)
qProg.cx(c, t)
qProg.u1(pi/4.0, t)
return qProg
def cu3pi2(qProg, c, t):
""" Controlled-u3(pi/2, -pi/2, pi/2) gate """
qProg.u1(pi/2.0, t)
qProg.cx(c, t)
qProg.u3(-pi/4.0, 0, 0, t)
qProg.cx(c, t)
qProg.u3(pi/4.0, -pi/2.0, 0, t)
return qProg
#----------------------------------------------------------------------
# Define circuits used by Alice and Bob for each of their inputs: 1,2,3
# dictionary for Alice's operations/circuits
aliceCircuits = {}
# Quantum circuits for Alice 1, 2, 3
for idx in range(1, 4):
circuitName = "Alice"+str(idx)
aliceCircuits[circuitName] = Q_program.create_circuit(circuitName, [qr], [cr])
theCircuit = aliceCircuits[circuitName]
if idx == 1:
#the circuit of A_1
theCircuit.x(qr[1])
theCircuit.cx(qr[1], qr[0])
theCircuit = cu1pi2(theCircuit, qr[1], qr[0])
theCircuit.x(qr[0])
theCircuit.x(qr[1])
theCircuit = cu1pi2(theCircuit, qr[0], qr[1])
theCircuit.x(qr[0])
theCircuit = cu1pi2(theCircuit, qr[0], qr[1])
theCircuit = cu3pi2(theCircuit, qr[0], qr[1])
theCircuit.x(qr[0])
theCircuit = ch(theCircuit, qr[0], qr[1])
theCircuit.x(qr[0])
theCircuit.x(qr[1])
theCircuit.cx(qr[1], qr[0])
theCircuit.x(qr[1])
elif idx == 2:
theCircuit.x(qr[0])
theCircuit.x(qr[1])
theCircuit = cu1pi2(theCircuit, qr[0], qr[1])
theCircuit.x(qr[0])
theCircuit.x(qr[1])
theCircuit = cu1pi2(theCircuit, qr[0], qr[1])
theCircuit.x(qr[0])
theCircuit.h(qr[0])
theCircuit.h(qr[1])
elif idx == 3:
theCircuit.cz(qr[0], qr[1])
theCircuit.swap(qr[0], qr[1]) # not supported in composer
theCircuit.h(qr[0])
theCircuit.h(qr[1])
theCircuit.x(qr[0])
theCircuit.x(qr[1])
theCircuit.cz(qr[0], qr[1])
theCircuit.x(qr[0])
theCircuit.x(qr[1])
#measure the first two qubits in the computational basis
theCircuit.measure(qr[0], cr[0])
theCircuit.measure(qr[1], cr[1])
# dictionary for Bob's operations/circuits
bobCircuits = {}
# Quantum circuits for Bob when receiving 1, 2, 3
for idx in range(1,4):
circuitName = "Bob"+str(idx)
bobCircuits[circuitName] = Q_program.create_circuit(circuitName, [qr], [cr])
theCircuit = bobCircuits[circuitName]
if idx == 1:
theCircuit.x(qr[2])
theCircuit.x(qr[3])
theCircuit.cz(qr[2], qr[3])
theCircuit.x(qr[3])
theCircuit.u1(pi/2.0, qr[2])
theCircuit.x(qr[2])
theCircuit.z(qr[2])
theCircuit.cx(qr[2], qr[3])
theCircuit.cx(qr[3], qr[2])
theCircuit.h(qr[2])
theCircuit.h(qr[3])
theCircuit.x(qr[3])
theCircuit = cu1pi2(theCircuit, qr[2], qr[3])
theCircuit.x(qr[2])
theCircuit.cz(qr[2], qr[3])
theCircuit.x(qr[2])
theCircuit.x(qr[3])
elif idx == 2:
theCircuit.x(qr[2])
theCircuit.x(qr[3])
theCircuit.cz(qr[2], qr[3])
theCircuit.x(qr[3])
theCircuit.u1(pi/2.0, qr[3])
theCircuit.cx(qr[2], qr[3])
theCircuit.h(qr[2])
theCircuit.h(qr[3])
elif idx == 3:
theCircuit.cx(qr[3], qr[2])
theCircuit.x(qr[3])
theCircuit.h(qr[3])
#measure the third and fourth qubits in the computational basis
theCircuit.measure(qr[2], cr[2])
theCircuit.measure(qr[3], cr[3])
- 计算基测量 :测量后,Alice 和 Bob 各自得到 2 位输出。为了得到第 3 位并得出最终答案,他们应用奇偶规则:Alice 的回复元素之和必须为偶数,Bob 的回复元素之和必须为奇数。以下是实现所有回合游戏的 Python 脚本:
def all_rounds(backend, real_dev, shots=10):
nWins = 0
nLost = 0
for a in range(1,4):
for b in range(1,4):
print("Asking Alice and Bob with a and b are: ", a,b)
rWins = 0
rLost = 0
aliceCircuit = aliceCircuits["Alice" + str(a)]
bobCircuit = bobCircuits["Bob" + str(b)]
circuitName = "Alice" + str(a) + "Bob"+str(b)
Q_program.add_circuit(circuitName, sharedEntangled+aliceCircuit+bobCircuit)
if real_dev:
ibmqx2_backend = Q_program.get_backend_configuration(backend)
ibmqx2_coupling = ibmqx2_backend['coupling_map']
results = Q_program.execute([circuitName], backend=backend, shots=shots, coupling_map=ibmqx2_coupling, max_credits=3, wait=10, timeout=240)
else:
results = Q_program.execute([circuitName], backend=backend, shots=shots)
answer = results.get_counts(circuitName)
for key in answer.keys():
kfreq = answer[key] #frequencies of keys obtained from measurements
aliceAnswer = [int(key[-1]), int(key[-2])]
bobAnswer = [int(key[-3]), int(key[-4])]
if sum(aliceAnswer) % 2 == 0:
aliceAnswer.append(0)
else:
aliceAnswer.append(1)
if sum(bobAnswer) % 2 == 1:
bobAnswer.append(0)
else:
bobAnswer.append(1)
if(aliceAnswer[b-1] != bobAnswer[a-1]):
#print(a, b, "Alice and Bob lost")
nLost += kfreq
rLost += kfreq
else:
#print(a, b, "Alice and Bob won")
nWins += kfreq
rWins += kfreq
print("\t#wins = ", rWins, "out of ", shots, "shots")
print("Number of Games = ", nWins+nLost)
print("Number of Wins = ", nWins)
print("Winning probabilities = ", (nWins*100.0)/(nWins+nLost))
#################################################
# main
#################################################
if __name__ == '__main__':
backend = "ibmq_qasm_simulator"
#backend = "ibmqx2"
real_dev = False
all_rounds(backend, real_dev)
3. Grover 搜索算法与 Shor 整数分解算法
3.1 Grover 搜索算法
Grover 搜索算法是一种无结构的量子搜索算法,由 Lov Grover 提出。该算法使用黑盒函数或 Oracle 以高概率找到输入元素,能在 $O(\sqrt{N})$ 步内找到目标元素,而经典算法平均需要 N/2 步。
如果要寻找的元素为 x,Grover 算法的伪代码如下:
1. 准备输入 $f: {0, 1, \ldots, N - 1} \to {0, 1}$,输入大小为 $2^n$(n 为比特数,N 为步数或搜索空间大小),目标是找到满足 $f(x) = 1$ 的 x。
2. 对输入的所有量子比特应用基态叠加。
3. 对输入量子比特进行相位反转。
4. 对输入进行均值反转。
5. 至少重复步骤 3 和 4 $\sqrt{N}$ 次,此时有很高概率找到 x。
3.2 Shor 整数分解算法
Shor 整数分解算法是著名的量子分解算法,专家认为它可能会使当前的非对称密码学受到严重威胁。Shor 算法大约可以在 $log(n^3)$ 步内分解整数,而最快的经典算法——数域筛法需要 $exp((log n)^{\frac{1}{3}}(log log n)^{\frac{2}{3}})$ 步。
综上所述,量子纠缠的力量为经典计算带来了显著的加速。量子算法在解决经典谜题和搜索问题上展现出了巨大的潜力,同时也对当前的密码学基础构成了挑战。
量子计算中的博弈与搜索算法(下半部分)
4. Grover 算法关键步骤解析
在 Grover 算法中,相位反转和关于均值的反转是两个关键步骤,下面深入剖析这两个步骤。
4.1 相位反转
相位反转是 Grover 算法中的重要操作,其目的是对满足 $f(x) = 1$ 的目标态进行相位翻转。具体来说,当输入的量子态处于目标态时,将其相位乘以 -1,而其他非目标态的相位保持不变。这一步骤可以通过一个黑盒函数(Oracle)来实现,Oracle 就像是一个神秘的盒子,它能够识别出目标态并对其进行相位调整。
4.2 关于均值的反转
关于均值的反转操作是 Grover 算法的另一个核心步骤。它的作用是将所有量子态的振幅相对于它们的均值进行反转。这个过程可以看作是对量子态的一种“重新分布”,使得目标态的振幅得到增强,而非目标态的振幅相对减弱。通过多次重复相位反转和关于均值的反转操作,目标态的振幅会不断增大,最终在测量时以高概率被检测到。
以下是这两个关键步骤的操作流程:
1.
相位反转
:
- 输入:包含所有可能状态的量子态。
- 操作:利用 Oracle 对目标态进行相位翻转。
- 输出:目标态相位反转后的量子态。
2.
关于均值的反转
:
- 输入:经过相位反转后的量子态。
- 操作:计算所有量子态振幅的均值,然后将每个量子态的振幅相对于均值进行反转。
- 输出:振幅重新分布后的量子态。
5. Grover 算法复杂度分析
Grover 算法的时间复杂度为 $O(\sqrt{N})$,这意味着随着搜索空间 $N$ 的增大,算法的执行时间增长速度相对较慢。相比之下,经典算法的平均时间复杂度为 $O(N)$,当搜索空间非常大时,Grover 算法的优势就会更加明显。
例如,当搜索空间 $N = 10^6$ 时,经典算法平均需要执行 $10^6 / 2 = 5 \times 10^5$ 步,而 Grover 算法只需要大约 $\sqrt{10^6} = 10^3$ 步,速度提升了两个数量级。这种速度提升在处理大规模数据搜索时具有重要的实际意义。
6. Shor 算法对密码学的影响
Shor 整数分解算法的出现对当前的非对称密码学构成了严重威胁。非对称密码学是现代通信安全的基石,许多重要的加密协议,如 RSA 算法,都是基于整数分解的困难性来保证安全性的。
然而,Shor 算法能够在多项式时间内分解大整数,这意味着如果量子计算机能够实现并运行 Shor 算法,那么现有的基于整数分解的加密系统将变得不安全。例如,RSA 算法中使用的公钥和私钥是通过大整数的因数分解来生成的,如果 Shor 算法能够快速分解这些大整数,那么攻击者就可以轻易地破解私钥,从而获取加密信息。
为了应对这一挑战,密码学界正在积极研究和开发抗量子计算的加密算法,这些算法不依赖于整数分解或离散对数等容易受到量子算法攻击的数学问题。
7. 量子算法的未来展望
量子算法作为量子计算领域的核心内容,具有巨大的发展潜力。随着量子技术的不断进步,量子计算机的性能将不断提高,这将使得量子算法在更多领域得到应用。
在搜索领域,Grover 算法可以应用于数据库搜索、优化问题求解等方面,大大提高搜索效率。在密码学领域,虽然 Shor 算法对现有加密系统构成威胁,但也促使人们开发更加安全的抗量子密码算法,推动密码学的发展。
此外,量子算法还可以应用于机器学习、量子化学模拟等领域,为这些领域带来新的突破。然而,目前量子计算技术仍面临许多挑战,如量子比特的稳定性、量子门的误差等,需要进一步的研究和改进。
总结
本文介绍了量子计算中的几个重要算法,包括在经典谜题中展现出加速效果的量子算法、Mermin - Peres 魔法方块游戏的量子获胜策略、Grover 搜索算法和 Shor 整数分解算法。这些算法展示了量子纠缠的力量以及量子计算相对于经典计算的优势。
量子算法在解决经典问题和搜索问题上具有显著的速度提升,同时也对现有的密码学基础构成了挑战。未来,随着量子技术的不断发展,量子算法有望在更多领域发挥重要作用,为科学研究和实际应用带来新的变革。
以下是一个简单的 mermaid 流程图,展示 Grover 算法的主要步骤:
graph TD;
A[准备输入] --> B[基态叠加];
B --> C[相位反转];
C --> D[均值反转];
D --> E{是否重复够次数};
E -- 否 --> C;
E -- 是 --> F[测量输出];
通过这个流程图,可以更清晰地看到 Grover 算法的执行流程,从输入准备到最终的测量输出,中间不断重复相位反转和均值反转步骤,直到有很高概率找到目标元素。
超级会员免费看
944

被折叠的 条评论
为什么被折叠?



