hdoj 3033 I love sneakers!

类型:分组背包

题目:http://acm.hdu.edu.cn/showproblem.php?pid=3033

来源:2009 Multi-University Training Contest 13 - Host by HIT

思路:

状态dp(i, m)表示用m钱买前i种品牌的产品可以获得的最大价值

对于第i种品牌的当前物品j

(1)不放j物品,那么结果为原始值dp(i, m)

(2)放j物品且不放1 ~ (j - 1)的物品,可以由前i - 1种品牌的值传递过来,即dp(i - 1, m-N[i][j].b)

(3)放j物品且放1 ~ (j - 1)的物品,由i层已经计算完成的值传递,即dp(i, w-N[i][j].b)

!!!初始化为0可以这样理解:不放任何物品可以获得的最大价值为0

!!!只有出现过的值才能传递

// hdoj 3033 I love sneakers!
// re ac 62MS 660K
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

#define FOR(i,a,b) for(i = (a); i < (b); ++i)
#define FORE(i,a,b) for(i = (a); i <= (b); ++i)
#define FORD(i,a,b) for(i = (a); i > (b); --i)
#define FORDE(i,a,b) for(i = (a); i >= (b); --i)
#define CLR(a,b) memset(a,b,sizeof(a))

const int INF = 0x7f7f7f7f;

int sum[11];
struct node {
	int b, v;
}N[11][101];
int DP[11][10001];

int main() {
	int n, m, k, i, j, w, p;

	while(scanf("%d %d %d", &n, &m, &k) != EOF) {
	    CLR(sum, 0);
	    FOR(i, 0, n) {
	        scanf("%d", &p);
			++sum[p];
			scanf("%d %d", &N[p][sum[p]].b, &N[p][sum[p]].v);
		}
		FORE(i, 0, k) FORE(j, 0, m)
            DP[i][j] = -INF;
        FORE(j, 0, m)
			DP[0][j] = 0;
        FORE(i, 1, k) {
            FORE(j, 1, sum[i]) {
                FORDE(w, m, N[i][j].b) {
                    if(DP[i][w - N[i][j].b] != -INF)
                        DP[i][w] = max(DP[i][w], DP[i][w - N[i][j].b] + N[i][j].v);
                    if(DP[i - 1][w - N[i][j].b] != -INF)
                        DP[i][w] = max(DP[i][w], DP[i - 1][w - N[i][j].b] + N[i][j].v);
				}
			}
		}
		if(DP[k][m] == -INF)
            printf("Impossible\n");
		else
            printf("%d\n", DP[k][m]);
	}
	return 0;
}


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页