文章阅读笔记:回测(Backtesting)模型的现状以及发展

本文探讨了传统回测技术的局限性,介绍了合成人工数据在金融领域的应用,如创建平行市场数据来测试投资策略。通过使用神经网络生成的数据,量化投资者能够进行前向测试并应对市场未知风险。数据生成器可以复制真实市场的复杂模式,增强模拟的准确性,帮助揭示潜在风险。研究还显示,结合机器学习模型,如GAN和变分自编码器,可以提高回测的逼真度和效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章:Rob Mannix, In fake data, quants see a fix for backtesting, Risk.net, May 2021.

传统回测技术

  • One version of events: traditional backtesting uses only one version of history: investors test the effectiveness of a strategy by charting how it would have performed in real-world conditions – they see what already happened.
  • Traditional methods of backtesting strategies is backward-looking.
  • ‘New flavour’ to backtesting: make it possible to explore the market’s unknown unknowns.

合成人工数据

  • Ultra-realistic ‘deep fake’ videos are common on social media platforms: videos of Tom Cruise playing golf and doing magic tricks raked up millions of views on TikTok. The clips didn’t feature Tom Cruise at all.
  • The technology behind these ultra-realistic ‘deep fake’ videos has already been applied in finance: quants use it to create parallel universes of data to test investment strategies.
  • Synthetic/artificial data: needs to invent alternative histories for deeper testing
  • New models allow forward-looking testing: quants can input into a model the level of market volatility or features of recent price moves and ask the model to plot future paths based on those readings
  • Rob Carver: “synthetic data could help in stress-testing strategies for which losses can be highly path dependent”
  • Blanka Hor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值