第十五周作业

题目


代码:

from sklearn import datasets
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
import numpy as np

def NB(X_train, y_train, X_test):
	clf = GaussianNB()
	clf.fit(X_train, y_train)
	return clf.predict(X_test)

def rbf_svm(X_train, y_train, X_test, C):
	clf = SVC(C=C, kernel='rbf')
	clf.fit(X_train, y_train)
	return clf.predict(X_test)
	
def RFC(n_estimators, X_train, y_train, X_test):
	clf = RandomForestClassifier(n_estimators=10)
	clf.fit(X_train, y_train)
	return clf.predict(X_test)

iris = datasets.load_iris()
dataset = datasets.make_classification(n_samples=1000, n_features=10,
			n_informative=2, n_redundant=2, n_repeated=0, n_classes=2)
			
kf = cross_validation.KFold(len(iris.data), n_folds=10, shuffle=True, random_state=1234)

nb_accuracy = []
nb_f1 = []
nb_auc_roc = []

svm_accuracy = []
svm_f1 = []
svm_auc_roc = []

rfc_accuracy = []
rfc_f1 = []
rfc_auc_roc = []

for train_index, test_index in kf:
	X_train, y_train = dataset[0][train_index], dataset[1][train_index]
	X_test, y_test   = dataset[0][test_index], dataset[1][test_index]
	
	#NB
	pred = NB(X_train, y_train, X_test)
	nb_accuracy.append(metrics.accuracy_score(y_test, pred))
	nb_f1.append(metrics.f1_score(y_test, pred))
	nb_auc_roc.append(metrics.roc_auc_score(y_test, pred))
	
	#rbf_svm	
	nn = len(X_train)
	bestC = None
	Cvalues = [1e-2,1e-1, 1e0, 1e1, 1e2]
	innerscore = []
	for C in Cvalues:
		ikf = cross_validation.KFold(nn, n_folds=5, shuffle=True, random_state=5678)
		innerf1 = []
		for t_index, v_index in ikf:
			X_t, X_v = X_train[t_index], X_train[v_index]
			y_t, y_v = y_train[t_index], y_train[v_index]
			
			ipred = rbf_svm(X_t, y_t, X_v, C)
			innerf1.append(metrics.f1_score(y_v, ipred))
			
		innerscore.append(sum(innerf1)/len(innerf1))
	bestC = Cvalues[np.argmax(innerscore)]
	print('The bestC is {} with the inner f1 score {}'.format(bestC, max(innerscore)))
	pred = rbf_svm(X_train, y_train, X_test, bestC)
	svm_accuracy.append(metrics.accuracy_score(y_test, pred))
	svm_f1.append(metrics.f1_score(y_test, pred))
	svm_auc_roc.append(metrics.roc_auc_score(y_test, pred))

	#RFC
	nn = len(X_train)
	best_nes = None
	nes_values = [10, 100, 1000]
	innerscore = []
	for nes in nes_values:
		ikf = cross_validation.KFold(nn, n_folds=5, shuffle=True, random_state=5678)
		innerf1 = []
		for t_index, v_index in ikf:
			X_t, X_v = X_train[t_index], X_train[v_index]
			y_t, y_v = y_train[t_index], y_train[v_index]
			
			ipred = RFC(nes, X_t, y_t, X_v)
			innerf1.append(metrics.f1_score(y_v, ipred))
			
		innerscore.append(sum(innerf1)/len(innerf1))
	best_nes = nes_values[np.argmax(innerscore)]
	print('The best n_estimators value is {} with the inner f1 score {}'.format(best_nes, max(innerscore)))
	pred = RFC(nes, X_train, y_train, X_test)
	rfc_accuracy.append(metrics.accuracy_score(y_test, pred))
	rfc_f1.append(metrics.f1_score(y_test, pred))
	rfc_auc_roc.append(metrics.roc_auc_score(y_test, pred))

print('*****the cross-validated performance*****')
print('GaussianNB:')
print('Accuracy score:\n{}'.format(nb_accuracy))
print('average: {}'.format(sum(nb_accuracy)/len(nb_accuracy)))
print('F1-score:\n{}'.format(nb_f1))
print('average: {}'.format(sum(nb_f1)/len(nb_f1)))
print('AUC ROC score:\n{}'.format(nb_auc_roc))
print('average: {}'.format(sum(nb_auc_roc)/len(nb_auc_roc)))
print('*****')
print('SVC:')
print('Accuracy score:\n{}'.format(svm_accuracy))
print('average: {}'.format(sum(svm_accuracy)/len(svm_accuracy)))
print('F1-score:\n{}'.format(svm_f1))
print('average: {}'.format(sum(svm_f1)/len(svm_f1)))
print('AUC ROC score:\n{}'.format(svm_auc_roc))
print('average: {}'.format(sum(svm_auc_roc)/len(svm_auc_roc)))
print('*****')
print('RandomForestClassifier:')
print('Accuracy score:\n{}'.format(rfc_accuracy))
print('average: {}'.format(sum(rfc_accuracy)/len(rfc_accuracy)))
print('F1-score:\n{}'.format(rfc_f1))
print('average: {}'.format(sum(rfc_f1)/len(rfc_f1)))
print('AUC ROC score:\n{}'.format(rfc_auc_roc))
print('average: {}'.format(sum(rfc_auc_roc)/len(rfc_auc_roc)))
print('*****')
结果:
The bestC is 1.0 with the inner f1 score 0.8678749455945998
The best n_estimators value is 1000 with the inner f1 score 0.8962557909926332
The bestC is 1.0 with the inner f1 score 0.8445989304812833
The best n_estimators value is 10 with the inner f1 score 0.8725475181926795
The bestC is 1.0 with the inner f1 score 0.8518346271059742
The best n_estimators value is 10 with the inner f1 score 0.8443333333333332
The bestC is 1.0 with the inner f1 score 0.8619444444444445
The best n_estimators value is 100 with the inner f1 score 0.8623759305210917
The bestC is 1.0 with the inner f1 score 0.8324285083631727
The best n_estimators value is 10 with the inner f1 score 0.8402929245034508
The bestC is 1.0 with the inner f1 score 0.8563861266068397
The best n_estimators value is 10 with the inner f1 score 0.8607061772077251
The bestC is 1.0 with the inner f1 score 0.8197329552168261
The best n_estimators value is 1000 with the inner f1 score 0.8546247083225303
The bestC is 1.0 with the inner f1 score 0.8367141397501928
The best n_estimators value is 100 with the inner f1 score 0.8504655299721714
The bestC is 1.0 with the inner f1 score 0.8334529785192293
The best n_estimators value is 1000 with the inner f1 score 0.8514978242888482
The bestC is 1.0 with the inner f1 score 0.8269505800095344
The best n_estimators value is 100 with the inner f1 score 0.8705391012398799
*****the cross-validated performance*****
GaussianNB:
Accuracy score:
[0.8666666666666667, 0.7333333333333333, 0.8, 0.8, 0.7333333333333333, 0.8, 0.93
33333333333333, 0.7333333333333333, 0.9333333333333333, 0.8666666666666667]
average: 0.8200000000000001
F1-score:
[0.8571428571428571, 0.75, 0.8571428571428572, 0.7692307692307693, 0.75, 0.79999
99999999999, 0.9333333333333333, 0.7777777777777778, 0.9523809523809523, 0.88888
88888888888]
average: 0.8335897435897437
AUC ROC score:
[0.8888888888888888, 0.7321428571428571, 0.75, 0.8125, 0.75, 0.8035714285714286,
 0.9375, 0.7222222222222223, 0.9, 0.8611111111111112]
average: 0.8157936507936508
*****
SVC:
Accuracy score:
[0.8, 0.7333333333333333, 0.8, 0.8666666666666667, 0.7333333333333333, 0.8, 0.93
33333333333333, 0.8, 0.8666666666666667, 0.8666666666666667]
average: 0.8200000000000001
F1-score:
[0.8, 0.75, 0.8695652173913044, 0.8571428571428571, 0.7777777777777778, 0.823529
411764706, 0.9333333333333333, 0.8421052631578948, 0.9090909090909091, 0.8888888
888888888]
average: 0.8451433658547671
AUC ROC score:
[0.8333333333333334, 0.7321428571428571, 0.7, 0.875, 0.7222222222222223, 0.79464
28571428572, 0.9375, 0.7777777777777778, 0.8, 0.8611111111111112]
average: 0.8033730158730158
*****
RandomForestClassifier:
Accuracy score:
[0.8, 0.7333333333333333, 0.8, 0.8666666666666667, 0.8, 0.8, 1.0, 0.8, 0.9333333
333333333, 0.8]
average: 0.8333333333333334
F1-score:
[0.7692307692307692, 0.75, 0.8695652173913044, 0.8571428571428571, 0.8, 0.823529
411764706, 1.0, 0.8421052631578948, 0.9523809523809523, 0.823529411764706]
average: 0.8487483882833191
AUC ROC score:
[0.8055555555555556, 0.7321428571428571, 0.7, 0.875, 0.8333333333333333, 0.79464
28571428572, 1.0, 0.7777777777777778, 0.9, 0.8055555555555555]
average: 0.8224007936507937
*****

分析:在选择参数的过程中使用了使分数最大的参数,共10次样例。机器学习的这些函数使用在课件上都有给出,而且过程也比较清晰,只要在10次样例中分别进行性能评估即可。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
GeoPandas是一个开源的Python库,旨在简化地理空间数据的处理和分析。它结合了Pandas和Shapely的能力,为Python用户提供了一个强大而灵活的工具来处理地理空间数据。以下是关于GeoPandas的详细介绍: 一、GeoPandas的基本概念 1. 定义 GeoPandas是建立在Pandas和Shapely之上的一个Python库,用于处理和分析地理空间数据。 它扩展了Pandas的DataFrame和Series数据结构,允许在其中存储和操作地理空间几何图形。 2. 核心数据结构 GeoDataFrame:GeoPandas的核心数据结构,是Pandas DataFrame的扩展。它包含一个或多个列,其中至少一列是几何列(geometry column),用于存储地理空间几何图形(如点、线、多边形等)。 GeoSeries:GeoPandas中的另一个重要数据结构,类似于Pandas的Series,但用于存储几何图形序列。 二、GeoPandas的功能特性 1. 读取和写入多种地理空间数据格式 GeoPandas支持读取和写入多种常见的地理空间数据格式,包括Shapefile、GeoJSON、PostGIS、KML等。这使得用户可以轻松地从各种数据源中加载地理空间数据,并将处理后的数据保存为所需的格式。 2. 地理空间几何图形的创建、编辑和分析 GeoPandas允许用户创建、编辑和分析地理空间几何图形,包括点、线、多边形等。它提供了丰富的空间操作函数,如缓冲区分析、交集、并集、差集等,使得用户可以方便地进行地理空间数据分析。 3. 数据可视化 GeoPandas内置了数据可视化功能,可以绘制地理空间数据的地图。用户可以使用matplotlib等库来进一步定制地图的样式和布局。 4. 空间连接和空间索引 GeoPandas支持空间连接操作,可以将两个GeoDataFrame按照空间关系(如相交、包含等)进行连接。此外,它还支持空间索引,可以提高地理空间数据查询的效率。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值