Java剑指 Offer II 091. 粉刷房子(击败89.32%用户)

题目:

假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。

当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。

例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。

请计算出粉刷完所有房子最少的花费成本。

示例 :

输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。
     最少花费: 2 + 5 + 3 = 10。




思路:

动态规划问题。

用dp[][]来计算价格

先考虑当前房子的涂色,拿前面的房子只能选其他两种颜色。

dp[ i ][ 0 ] =Math.min(dp[ i-1 ][ 1] ,dp[ i-1 ][ 2]) + cost【i】【0】

其他就看代码及注释,好理解。

复杂度:

时间:遍历O【n】。

空间:dp数组O【n】。

代码:

 public int minCost(int[][] costs) {
        int n = costs.length;
        //用dp数组来记下刷前n个房子的总花销
        int[][] dp = new int[n][3];
        //获取第一个房子三个颜色的价格
        for(int i = 0;i<3;i++){
            dp[0][i] = costs[0][i];
        }
        for(int i=1;i<n;i++){
            dp[i][0] =Math.min(dp[i-1][1],dp[i-1][2])+costs[i][0];
            dp[i][1] =Math.min(dp[i-1][0],dp[i-1][2])+costs[i][1];
            dp[i][2] =Math.min(dp[i-1][1],dp[i-1][0])+costs[i][2];
        }
        //dp的长度是n,但是取不到n,有0起始,最大取到n-1
        return Math.min(dp[n-1][0],Math.min(dp[n-1][1],dp[n-1][2]));
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值