题目:
假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。
当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。
例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。
请计算出粉刷完所有房子最少的花费成本。
示例 :
输入: costs = [[17,2,17],[16,16,5],[14,3,19]] 输出: 10 解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。 最少花费: 2 + 5 + 3 = 10。
思路:
动态规划问题。
用dp[][]来计算价格
先考虑当前房子的涂色,拿前面的房子只能选其他两种颜色。
dp[ i ][ 0 ] =Math.min(dp[ i-1 ][ 1] ,dp[ i-1 ][ 2]) + cost【i】【0】
其他就看代码及注释,好理解。
复杂度:
时间:遍历O【n】。
空间:dp数组O【n】。
代码:
public int minCost(int[][] costs) {
int n = costs.length;
//用dp数组来记下刷前n个房子的总花销
int[][] dp = new int[n][3];
//获取第一个房子三个颜色的价格
for(int i = 0;i<3;i++){
dp[0][i] = costs[0][i];
}
for(int i=1;i<n;i++){
dp[i][0] =Math.min(dp[i-1][1],dp[i-1][2])+costs[i][0];
dp[i][1] =Math.min(dp[i-1][0],dp[i-1][2])+costs[i][1];
dp[i][2] =Math.min(dp[i-1][1],dp[i-1][0])+costs[i][2];
}
//dp的长度是n,但是取不到n,有0起始,最大取到n-1
return Math.min(dp[n-1][0],Math.min(dp[n-1][1],dp[n-1][2]));
}