【PyTorch】PyTorch中张量(Tensor)切片操作

本文详细介绍了在PyTorch中如何使用张量切片操作获取和修改元素,包括基本的切片方法,torch.where()函数的应用,以及如何使用torch.tril()和torch.triu()置零特定区域的元素以及torch.diag()保留对角线元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch深度学习总结

第三章 PyTorch中张量(Tensor)切片操作



一、前言

上文介绍了PyTorch中改变张量(Tensor)形状的操作,本文主要介绍张量切片操作。


二、获取张量中的元素

1、切片(行、列数)方法

# 引入库
import torch

# 生成张量
A = torch.arange(9).reshape(3, 3)
print(A)

生成张量A:
tensor(
[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])


现截取A[0]:

print(A[0]) # 截取最外围括号内第一个括号的内容,第一个维度第一行的内容

结果为:
tensor([0, 1, 2])

# 引入库
import torch

# 生成张量
B = torch.arange(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值