数据处理方法汇总
第一章 格兰杰因果检验(Granger causality test)
文章目录
一、格兰杰因果测试是什么?
个人总结为:用于测试不同变量之间因果关系的测试方法(注意:重点指一个时序变量变化对另一个变量变化的影响)。
百度百科解释为:
格兰杰因果关系检验的基本思想是在包含过去信息的条件下,一个变量的预测能够提高另一个变量的预测效果,这表明第一个变量可能是第二个变量的格兰杰原因,即第一个变量的变化能解释第二个变量的未来变化。
二、Python代码实现
1.grangercausalitytests函数用法
grangercausalitytests(df[[A, B]], maxlag=2, verbose=False)
其中df为DataFrame,A和B为索引名称,maxlag指lag的最大值
# 引入库
from statsmodels.tsa.stattools import grangercausalitytests
# 对数据进行分析
df = pd.read_csv('###.csv', parse_dates=['date']) #读取数据并指定那一列为时间数据
df['month'] = df.date.dt.month
grangercausalitytests(df[['value', 'month']], maxlag=