【Data Procession】格兰杰因果检验

本文介绍了格兰杰因果检验的原理及其在Python中的应用,包括grangercausalitytests函数用法、判别因果性、绘制混淆矩阵以及相关函数的使用。重点强调了在数据处理中如何通过时序变量判断因果关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据处理方法汇总

第一章 格兰杰因果检验(Granger causality test)


一、格兰杰因果测试是什么?

个人总结为:用于测试不同变量之间因果关系的测试方法(注意:重点指一个时序变量变化对另一个变量变化的影响)。
百度百科解释为:
格兰杰因果关系检验的基本思想是在包含过去信息的条件下,一个变量的预测能够提高另一个变量的预测效果,这表明第一个变量可能是第二个变量的格兰杰原因,即第一个变量的变化能解释第二个变量的未来变化。

二、Python代码实现

1.grangercausalitytests函数用法

grangercausalitytests(df[[A, B]], maxlag=2, verbose=False)

其中df为DataFrame,A和B为索引名称,maxlag指lag的最大值

# 引入库
from statsmodels.tsa.stattools import grangercausalitytests

# 对数据进行分析
df = pd.read_csv('###.csv', parse_dates=['date'])  #读取数据并指定那一列为时间数据
df['month'] = df.date.dt.month
grangercausalitytests(df[['value', 'month']], maxlag=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值