样本方差为何除以n-1?

方差的概念从小学就开始建立了。对于一个随机变量X\mu,\sigma^2分别表示其数学期望和方差,从中随机抽取n个样本X_1,X_2,\ldots,X_n\overline X=\sum_{i=1}^nX_i是样本均值,S^2=\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2是样本方差。那么为什么样本方差是除以n-1而不是n呢?

  这里涉及到一个无偏估计的概念,X是随机变量,X_i,\overline X, S^2同样也是随机变量,其中\overline X,S^2是对X总体\mu,\sigma^2的一个估计,如果\overline X,S^2的期望分别等于\mu,\sigma^2的话,就说这种估计是无偏的。容易证明E(\overline X)=\mu,但是E(S^2)=E(\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2)=\sigma^2的证明就不是那么显而易见了,下面我证明给大家看。记D(X_i),E(X_i)X_i的方差和期望。


\large\begin{array}{rcl}<br />D(\overline X)&=&D(\frac1n\sum_{i=1}^nX_i)\\[10pt]<br />&=&\frac1{n^2}D(\sum_{i=1}^nX_i)\\[10pt]<br />&=&\frac1{n^2}(\sum_{i=1}^nD(X_i))\\[10pt]<br />&=&\frac{\sigma^2}n \\[10pt]<br />\\<br />E({\overline X}^2)&=&D(\overline X)+E^2(\overline X)\\<br />&=&\frac{\sigma^2}n+\mu^2 \\<br />\\<br />E(S^2)&=&E(\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2) \\[10pt]<br /> &=& \frac1{n-1}E(\sum_{i=1}^n(X_i-\overline X )^2) \\[10pt]<br /> &=& \frac1{n-1}E(\sum_{i=1}^n(X_i^2- 2 X_i{\overline X}+{\overline X}^2 ))\\[10pt]<br />\\<br />E(\sum_{i=1}^nX_i^2)&=&n E(X_i^2) \\<br /> &=& n(D(X_i)+E^2(X_i)) \\<br /> &=& n(\sigma^2+\mu^2) \\<br />\\<br />E(\sum_{i=1}^nX_i{\overline X})&=&E({\overline X}\sum_{i=1}^nX_i) \\[10pt]<br /> &=& nE({\overline X}^2)\\[10pt]<br /> &=& n(D(\overline X) + E^2(\overline X)) \\[10pt]<br /> &=& n(\frac{\sigma^2}{n}+\mu^2) \\[10pt]<br />\\<br />E(S^2) &=& \frac n{n-1}(\sigma^2+\mu^2)-\frac n{n-1}(\frac{\sigma^2}n+\mu^2) \\<br /> &=& \sigma^2 \\<br />\end{array}<br />
证毕

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值