样本方差为何除以n-1

title: 样本方差为何除以n-1mathjax: truecategories: ML

博客主站链接:https://fainke.com
**1.**设样本均值为 X ‾ \overline{X} X,样本方差为 S 2 S^2 S2,总体均值为 μ \mu μ,总体方差为 σ 2 \sigma^{2} σ2,那么样本方差 S 2 S^2 S2的公式为: S 2 = 1 n − 1 ∑ i = 1 n ( x i − X ‾ ) 2 S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\overline{X}\right)^{2} S2=n11i=1n(xiX)2

2.知识补充

(1)为何样本均值的方差等于总体方差除以总体单位数?

答:设X为随机变量,X1,X2,…,Xn为其n个样本,D(X)为方差。根据方差的性质,有 D ( X + Y ) = D X + D Y D(X+Y)=D X+D Y D(X+Y)=DX+DY,以及 D ( k X ) = k 2 ∗ D ( X ) D(k X)=k^{2} * D(X) D(kX)=k2D(X),其中X和Y相互独立,k为常数。于是有 D ( ∑ i = 1 n X i n ) = D ( ∑ i = 1 n X i n ) = ∑ i = 1 n D ( X i ) n 2 = 1 n D ( X ) D\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)=D\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right)=\frac{\sum_{i=1}^{n} D\left(X_{i}\right)}{n^{2}}=\frac{1}{n} D(X) D(ni=1nXi)=D(i=1nnXi)=n2i=1nD(Xi)=n1D(X)

3.公式证明

假设样本方差的公式为: S 1 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 S_{1}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2} S12=n1i=1n(XiX)2有:

E ( S 1 2 ) = 1 n ∑ i = 1 n E ( ( X i − X ‾ ) 2 ) = 1 n E ( ∑ i = 1 n ( X i − μ + μ − X ‾ ) 2 ) E\left(S_{1}^{2}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(\left(X_{i}-\overline{X}\right)^{2}\right)=\frac{1}{n} E\left(\sum_{i=1}^{n}\left(X_{i}-\mu+\mu-\overline{X}\right)^{2}\right) E(S12)=n1i=1nE((XiX)2)=n1E(i=1n(Xiμ+μX)2)
= 1 n E ( ∑ i = 1 n ( ( X i − μ ) 2 − 2 ( X i − μ ) ( X ‾ − μ ) + ( X ‾ − μ ) 2 ) ) =\frac{1}{n} E\left(\sum_{i=1}^{n}\left(\left(X_{i}-\mu\right)^{2}-2\left(X_{i}-\mu\right)(\overline{X}-\mu)+(\overline{X}-\mu)^{2}\right)\right) =n1E(i=1n((Xiμ)22(Xiμ)(Xμ)+(Xμ)2))
= 1 n E ( ∑ i = 1 n ( X i − μ ) 2 − 2 ∑ i = 1 n ( X i − μ ) ( X ‾ − μ ) + n ( X ‾ − μ ) 2 ) =\frac{1}{n} E\left(\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-2 \sum_{i=1}^{n}\left(X_{i}-\mu\right)(\overline{X}-\mu)+n(\overline{X}-\mu)^{2}\right) =n1E(i=1n(Xiμ)22i=1n(Xiμ)(Xμ)+n(Xμ)2)
= 1 n E ( ∑ i = 1 n ( X i − μ ) 2 − n ( X ‾ − μ ) ( X ‾ − μ ) + n ( X ‾ − μ ) 2 ) =\frac{1}{n} E\left(\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-n(\overline{X}-\mu)(\overline{X}-\mu)+n(\overline{X}-\mu)^{2}\right) =n1E(i=1n(Xiμ)2n(Xμ)(Xμ)+n(Xμ)2)
= 1 n E ( ∑ i = 1 n ( X i − μ ) 2 − n E ( X ‾ − μ ) ( X ‾ − μ ) + n ( X ‾ − μ ) 2 ) =\frac{1}{n} E\left(\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-n E(\overline{X}-\mu)(\overline{X}-\mu)+n(\overline{X}-\mu)^{2}\right) =n1E(i=1n(Xiμ)2nE(Xμ)(Xμ)+n(Xμ)2)
= 1 n ( ∑ i = 1 n ( X i − μ ) 2 − n E ( X ‾ − μ ) ( X ‾ − μ ) + n ( X ‾ − μ ) 2 ) =\frac{1}{n}\left(\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-n E(\overline{X}-\mu)(\overline{X}-\mu)+n(\overline{X}-\mu)^{2}\right) =n1(i=1n(Xiμ)2nE(Xμ)(Xμ)+n(Xμ)2)
= 1 n ( n Var ⁡ ( X ) − n Var ⁡ ( X ‾ ) ) =\frac{1}{n}(n \operatorname{Var}(X)-n \operatorname{Var}(\overline{X})) =n1(nVar(X)nVar(X))
= Var ⁡ ( X ) − Var ⁡ ( X ‾ ) = σ 2 − σ 2 n = n − 1 n σ 2 =\operatorname{Var}(X)-\operatorname{Var}(\overline{X})=\sigma^{2}-\frac{\sigma^{2}}{n}=\frac{n-1}{n} \sigma^{2} =Var(X)Var(X)=σ2nσ2=nn1σ2

样本方差有偏是因为样本均值相对总体有偏,在这种情况下,样本方差比总体方差小1/n个总体方差,所以分母为n-1即可做到无偏。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值