CT图像.dcm文件转换成图片格式


前言

医学图像中CT切片很多都是.dcm格式,怎么把它转换成.jpg图片格式以便观察或者后续操作。主要利用窗位窗宽对dcm文件中的数值进行调节。

一、窗位窗宽是什么?

当解释CT(计算机断层扫描)图像时,窗位(Window Level)和窗宽(Window Width)是两个重要的概念。它们用于调整和优化图像以显示不同组织和结构的对比度和亮度。下面我会详细解释这两个概念:

窗位(Window Level):

定义:窗位是图像上显示的灰度级别的中心值,通常以Hounsfield Units(HU)为单位。它决定了图像中哪些灰度级别被认为是图像中间的,因此影像上显示的组织将以这个中心值为基准进行亮度调整。
作用:窗位允许你调整图像中感兴趣的结构的亮度级别,以便更好地显示这些结构。通过改变窗位,你可以将兴趣区域的灰度值调整到图像中间,从而提高可视化效果。
窗宽(Window Width):

定义:窗宽是图像上显示的灰度级别的范围,通常以HU为单位。它决定了图像中有多少不同灰度级别被包含在窗宽范围内,即图像的对比度。
作用:窗宽允许你控制图像的对比度。较大的窗宽将包括更多灰度级别,导致低对比度图像,而较小的窗宽将限制灰度级别范围,导致高对比度图像。
如何调整窗位和窗宽:

增加窗位:将图像中心的灰度级别向高密度方向移动,使组织变亮。
减小窗位:将图像中心的灰度级别向低密度方向移动,使组织变暗。
增加窗宽:扩大灰度级别范围,增加对比度。
减小窗宽:缩小灰度级别范围,降低对比度。
例如,当查看头部CT扫描时,你可以使用窗位和窗宽来优化显示脑组织和骨骼结构的对比度。通过适当调整窗位和窗宽,你可以确保脑部组织在图像中清晰可见,同时不会过度增强或模糊骨骼结构。

总之,窗位和窗宽是用于调整CT图像外观的参数,以提供更好的可视化效果和更准确的诊断信息。医生通常会根据患者的需要和疾病特征来调整这些参数,以获得最佳的影像质量。

二、代码实现

分为两步,一步是HU值获取。一步是利用窗位窗宽进行调整。

HU值获取

def getCtHU(dcm_name):
    '''直接传入dicm文件/IMA文件'''
    dcm = pydicom.dcmread(dcm_name, force=True)
    dcm.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
    # 获取图像HU,部分参数没有或者报错的话可以自己手动查看它的属性,可以debug
    hu_values = dcm.pixel_array.astype(np.float32) * float(dcm.RescaleSlope) + float(dcm.RescaleIntercept)  # float64
    return hu_values

根据窗位窗宽进行调整


def windowsLevelTransform(Hu, window, level):
    img = Hu
    min = level - float(window) * 0.5
    max = level + float(window) * 0.5
    img[img < min] = min
    img[img > max] = max
    norm_ = (img - min) / window
    norm_.astype('float32')
    return norm_

总结

本文介绍了把.dcm文件转换为.jpg文件的过程和代码。

在Java中,将DICOM (Digital Imaging and Communications in Medicine) 文件转换成VTK (Visualization Toolkit) 的VTi或VTU格式通常需要借助一些第三方库,因为这两种格式分别对应于点云和网格数据,而标准Java库并不直接支持这样的转换。 一种常见的做法是先通过开源库如DCMTK(用于读取和处理DICOM文件)获取DICOM图像的数据,然后利用像ITK (Insight Toolkit) 或 MedITK这样的医学图像处理库对数据进行预处理。之后,可以利用VTK本身的IO工具或其提供的Python绑定(比如pyvista)将处理后的数据保存为VTP文件。 以下是大致步骤: 1. **导入必要的库**:`dcmtk`, `itk`, 和 `pyvista` 或 `vtk`. ```java import org.dcm4che3.data.Dataset; import org.dcm4che3.io.DicomInputStream; import org.itk.simple.SimpleITK; import pyvista.PyVista; ``` 2. **读取和解析DICOM文件**: ```java DicomInputStream dis = new DicomInputStream(new File("input.dcm")); Dataset ds = DicomObject.read(dis); dis.close(); ``` 3. **处理并转换数据**: ```java // 这里假设你需要的是灰度图像,实际可能需要更复杂的处理 SimpleITK.Image siImage = SimpleITK.ReadImage(ds); byte[] imageData = siImage.GetArrayAs('B'); ``` 4. **创建VTP对象并保存**: ```java PyVistaImageData vtiData = PyVistaImageData.from_array(imageData, origin=siImage.GetSize(), spacing=siImage.GetSpacing()); vtiData.save_as_vti("output.vti"); ``` 请注意,这只是一个基本示例,实际操作可能需要根据具体需求进行调整,并且在处理医疗数据时,确保遵守相关的法律法规和隐私规定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值