主成分分析和因子分析十大不同点

本文总结了主成分分析和因子分析的十大不同点,包括原理、线性表示、假设条件、求解方法、变化特点、因子/主成分数量、解释重点、算法差异、优点和应用场景。主成分分析侧重于信息贡献影响力综合评价,而因子分析更注重变量间的相关关系。两者在数据降维、变量评价和结构探索中各有优势。
摘要由CSDN通过智能技术生成

主成分分析和因子分析无论从算法上还是应用上都有着比较相似之处,本文结合以往资料以及自己的理解总结了以下十大不同之处,适合初学者学习之用。


1.原理不同

主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。

因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成就是要从数据中提取对变量起解释作用的少数公共因子因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)

 

2.线性表示方向不同

因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合

 

3.假设条件不同

主成分分析:不需要有假设(assumptions),

因子分析:需要一些假设。因子分析的假设包括&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值