最近流行一垃圾词

阅读本文大概需要 1.19 分钟

最近流行一个词,叫「历史的垃圾时间」。不管是朋友圈还是其他社交平台,总能看到这词的身影,流量热度跟「草台班子」有得一拼,「草台班子」稍微好点理解,是对部分精英的祛魅,那「历史的垃圾时间」是啥玩意?我寻思时间这玩意还分垃圾的么?难不成还有时间的垃圾分类?

好奇看了下,发现主要有两拨人分析这玩意,一拨说「历史的垃圾时间」出自于某个经济学家,完了另一拨人解释分析说该经济学家没说过这个词,主打一个中国版鲁迅:这话我没说过。

那说白了,这个「历史的垃圾时间」表达的是一种悲观论调,即当下环境太「垃圾」,细分下来可以说成,比如很稳定下跌的 A 股,此阶段称之为 A 股的垃圾时间;又比如房产政策接二连三调整,俗称房产的垃圾时间;再比如币圈韭菜又新增,也可被称之为币圈的垃圾时间等等。那以此类推,互联网近期裁员滚滚,是不是也能称之为大厂的垃圾时间了呢?所以你看,其实就是一个连环套,哪个不行套哪个,恰逢环境一般,于是一套一个准。要是赶上好时候,不就能说成「历史的光辉时刻」了?

概言之,「历史的垃圾时间」这一说法本身就是垃圾,传递的主要垃圾信息就是,当下多数人处在一个不好的历史阶段,个体又难以扭转局面无法与大趋势抗衡,是套上了这么个「历史的垃圾时间」说辞,某种程度上,说好听点是给大家一点心理安慰,说难听点是给更多人一个直接摆烂的「正当借口」。

诚然,大环境不好这是事实,现在不管是职场就业环境还是一些投资行情都很一般,搞得很多人都挺懵的,不知所措有些迷茫甚至干脆想摆烂了。但坦白说,我们每个人都应该去接受历史进程中的各种发展和变化。

当我们处在一个发展状态一般的环境下,我们普通人能做的,就是降低自己的欲望需求,降低一些可能的风险帮助熬过这波周期。比如不懂别碰股票,减少杠杆。还要转变一些观念,比如以前觉得房子肯定升值,炒房准没错,现在发现房子开始回归居住属性。以前觉得学历越高出来找工作越容易,现在发现多的是找不到工作或者工作薪资一般的高学历人群。所以,适时改变一些观念,去适应一些变化很重要。

与此同时,当你压根没到衣食住行都成问题的时候,你要做的是还要花一些时间精力放在专注个人能力与专业的提升上。比如如果公司总是让加没意义无效浪费时间的班,那你干脆把这时间利用起来,俗称摸鱼学习,当然,可能这个阶段你再怎么学也很难一些保证看到实际效益,但这很正常,越是大家都觉得糟糕的阶段,越要学,这个时候你就主打一个积累为主,为长期考量就好了。平时该生活生活,垃圾 APP 该卸载卸载,负能量内容该叉叉掉,偶尔远离网络也没毛病。

总之,历史就没有垃圾时间,时间也没垃圾这一说辞,就是个客观的进程,顶多是那些制造焦虑的人进入了自己个人历史的垃圾时间,顺带拉拢你一起进入。甚至没准这些劝你摆烂的人其实自个私下在悄悄卷着,等着哪天发光亮瞎你双眼,这样的情况多了去了。

所以啊,面对这些「历史的垃圾时间」说辞,劝你摆烂别干的的,你也别当真。说到底,历史不会眷顾每一个人,但生活还是你自己的,人生说长不长,不过匆匆几十载。如果你把自己的时间都花在哀叹「历史的垃圾时间」上,哪怕你是对的,你最后也会后悔自己怎么啥事没干,光哀叹一生了呢?

推荐阅读:

存款 10 万,局部退休了

小红书裁员,人效不如 pdd

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是种将多张有限视角的图像合并成个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每张图像的每个块,计算与另张图像所有块之间的相似度,如欧氏距离、归化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不致性和缝隙,生成全景图像。 在MATLAB环境中实现这过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值